22,122 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Galois differential algebras and categorical discretization of dynamical systems

    Full text link
    A categorical theory for the discretization of a large class of dynamical systems with variable coefficients is proposed. It is based on the existence of covariant functors between the Rota category of Galois differential algebras and suitable categories of abstract dynamical systems. The integrable maps obtained share with their continuous counterparts a large class of solutions and, in the linear case, the Picard-Vessiot group.Comment: 19 pages (examples added

    Nonlinear Photonic Crystals: IV. Nonlinear Schrodinger Equation Regime

    Full text link
    We study here the nonlinear Schrodinger Equation (NLS) as the first term in a sequence of approximations for an electromagnetic (EM) wave propagating according to the nonlinear Maxwell equations (NLM). The dielectric medium is assumed to be periodic, with a cubic nonlinearity, and with its linear background possessing inversion symmetric dispersion relations. The medium is excited by a current J\mathbf{J} producing an EM wave. The wave nonlinear evolution is analyzed based on the modal decomposition and an expansion of the exact solution to the NLM into an asymptotic series with respect to some three small parameters α\alpha , β\beta and ϱ\varrho . These parameters are introduced through the excitation current J\mathbf{J} to scale respectively (i) its amplitude and consequently the magnitude of the nonlinearity; (ii) the range of wavevectors involved in its modal composition, with β1\beta ^{-1} scaling its spatial extension; (iii) its frequency bandwidth, with ϱ1\varrho ^{-1} scaling its time extension. We develop a consistent theory of approximations of increasing accuracy for the NLM with its first term governed by the NLS. We show that such NLS regime is the medium response to an almost monochromatic excitation current J\mathbf{J} . The developed approach not only provides rigorous estimates of the approximation accuracy of the NLM with the NLS in terms of powers of α\alpha , β\beta and ϱ\varrho , but it also produces new extended NLS (ENLS) equations providing better approximations. Remarkably, quantitative estimates show that properly tailored ENLS can significantly improve the approximation accuracy of the NLM compare with the classical NLS

    Separatrix splitting at a Hamiltonian 02iω0^2 i\omega bifurcation

    Full text link
    We discuss the splitting of a separatrix in a generic unfolding of a degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We assume that the unperturbed fixed point has two purely imaginary eigenvalues and a double zero one. It is well known that an one-parametric unfolding of the corresponding Hamiltonian can be described by an integrable normal form. The normal form has a normally elliptic invariant manifold of dimension two. On this manifold, the truncated normal form has a separatrix loop. This loop shrinks to a point when the unfolding parameter vanishes. Unlike the normal form, in the original system the stable and unstable trajectories of the equilibrium do not coincide in general. The splitting of this loop is exponentially small compared to the small parameter. This phenomenon implies non-existence of single-round homoclinic orbits and divergence of series in the normal form theory. We derive an asymptotic expression for the separatrix splitting. We also discuss relations with behaviour of analytic continuation of the system in a complex neighbourhood of the equilibrium

    Source Galerkin Calculations in Scalar Field Theory

    Get PDF
    In this paper, we extend previous work on scalar ϕ4\phi^4 theory using the Source Galerkin method. This approach is based on finding solutions Z[J]Z[J] to the lattice functional equations for field theories in the presence of an external source JJ. Using polynomial expansions for the generating functional ZZ, we calculate propagators and mass-gaps for a number of systems. These calculations are straightforward to perform and are executed rapidly compared to Monte Carlo. The bulk of the computation involves a single matrix inversion. The use of polynomial expansions illustrates in a clear and simple way the ideas of the Source Galerkin method. But at the same time, this choice has serious limitations. Even after exploiting symmetries, the size of calculations become prohibitive except for small systems. The calculations in this paper were made on a workstation of modest power using a fourth order polynomial expansion for lattices of size 828^2,434^3,242^4 in 2D2D, 3D3D, and 4D4D. In addition, we present an alternative to the Galerkin procedure that results in sparse matrices to invert.Comment: 31 pages, latex, figures separat
    corecore