231 research outputs found

    CNA Tactics and Techniques: A Structure Proposal

    Full text link
    [EN] Destructive and control operations are today a major threat for cyber physical systems. These operations, known as Computer Network Attack (CNA), and usually linked to state-sponsored actors, are much less analyzed than Computer Network Exploitation activities (CNE), those related to intelligence gathering. While in CNE operations the main tactics and techniques are defined and well structured, in CNA there is a lack of such consensuated approaches. This situation hinders the modeling of threat actors, which prevents an accurate definition of control to identify and to neutralize malicious activities. In this paper, we propose the first global approach for CNA operations that can be used to map real-world activities. The proposal significantly reduces the amount of effort need to identify, analyze, and neutralize advanced threat actors targeting cyber physical systems. It follows a logical structure that can be easy to expand and adapt.VillalĂłn-Huerta, A.; Ripoll-Ripoll, I.; Marco-Gisbert, H. (2021). CNA Tactics and Techniques: A Structure Proposal. Journal of Sensor and Actuator Networks. 10(1):1-23. https://doi.org/10.3390/jsan10010014S12310

    Implementation of DoS and DDoS attacks on cloud servers

    Get PDF
    Cloud environments face many threats as traditional corporate networks, but due to the vast amount of data stored on cloud servers, providers become an attractive target. Thus the security level of data on the cloud servers is always a key issue from preventing potential attacks. This paper intends to show a relatively easy way to implement a Denial of Service (DoS) attack and/or a Distributed Denial of Service (DDoS) attack. The used Phyton scripts like HULK or XML-RPC are able to make several hundred requests to the server in short period of time. The HULK is better for DoS attack, while XML-RPC is for pure DDoS attack. It is concluded that with proper tools and applications, the access to the VM and DDoS can be implemented relatively easy way

    Cyber-storms come from clouds:Security of cloud computing in the IoT era

    Get PDF
    The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds

    Cross Domain IW Threats to SOF Maritime Missions: Implications for U.S. SOF

    Get PDF
    As cyber vulnerabilities proliferate with the expansion of connected devices, wherein security is often forsaken for ease of use, Special Operations Forces (SOF) cannot escape the obvious, massive risk that they are assuming by incorporating emerging technologies into their toolkits. This is especially true in the maritime sector where SOF operates nearshore in littoral zones. As SOF—in support to the U.S. Navy— increasingly operate in these contested maritime environments, they will gradually encounter more hostile actors looking to exploit digital vulnerabilities. As such, this monograph comes at a perfect time as the world becomes more interconnected but also more vulnerable

    Understanding IoT Security Through the Data Crystal Ball: Where We Are Now and Where We Are Going To Be

    Get PDF
    Inspired by the boom of the consumer IoT market, many device manufacturers, new start-up companies and technology behemoths have jumped into the space. Indeed, in a span of less than 5 years, we have experienced the manifestation of an array of solutions for the smart home, smart cities and even smart cars. Unfortunately, the exciting utility and rapid marketization of IoTs, come at the expense of privacy and security. Online and industry reports, and academic work have revealed a number of attacks on IoT systems, resulting in privacy leakage, property loss and even large-scale availability problems on some of the most influential Internet services (e.g. Netflix, Twitter). To mitigate such threats, a few new solutions have been proposed. However, it is still less clear what are the impacts they can have on the IoT ecosystem. In this work, we aim to perform a comprehensive study on reported attacks and defenses in the realm of IoTs aiming to find out what we know, where the current studies fall short and how to move forward. To this end, we first build a toolkit that searches through massive amount of online data using semantic analysis to identify over 3000 IoT-related articles (papers, reports and news). Further, by clustering such collected data using machine learning technologies, we are able to compare academic views with the findings from industry and other sources, in an attempt to understand the gaps between them, the trend of the IoT security risks and new problems that need further attention. We systemize this process, by proposing a taxonomy for the IoT ecosystem and organizing IoT security into five problem areas. We use this taxonomy as a beacon to assess each IoT work across a number of properties we define. Our assessment reveals that despite the acknowledged and growing concerns on IoT from both industry and academia, relevant security and privacy problems are far from solved. We discuss how each proposed solution can be applied to a problem area and highlight their strengths, assumptions and constraints. We stress the need for a security framework for IoT vendors and discuss the trend of shifting security liability to external or centralized entities. We also identify open research problems and provide suggestions towards a secure IoT ecosystem

    IoT-MQTT based denial of service attack modelling and detection

    Get PDF
    Internet of Things (IoT) is poised to transform the quality of life and provide new business opportunities with its wide range of applications. However, the bene_ts of this emerging paradigm are coupled with serious cyber security issues. The lack of strong cyber security measures in protecting IoT systems can result in cyber attacks targeting all the layers of IoT architecture which includes the IoT devices, the IoT communication protocols and the services accessing the IoT data. Various IoT malware such as Mirai, BASHLITE and BrickBot show an already rising IoT device based attacks as well as the usage of infected IoT devices to launch other cyber attacks. However, as sustained IoT deployment and functionality are heavily reliant on the use of e_ective data communication protocols, the attacks on other layers of IoT architecture are anticipated to increase. In the IoT landscape, the publish/- subscribe based Message Queuing Telemetry Transport (MQTT) protocol is widely popular. Hence, cyber security threats against the MQTT protocol are projected to rise at par with its increasing use by IoT manufacturers. In particular, the Internet exposed MQTT brokers are vulnerable to protocolbased Application Layer Denial of Service (DoS) attacks, which have been known to cause wide spread service disruptions in legacy systems. In this thesis, we propose Application Layer based DoS attacks that target the authentication and authorisation mechanism of the the MQTT protocol. In addition, we also propose an MQTT protocol attack detection framework based on machine learning. Through extensive experiments, we demonstrate the impact of authentication and authorisation DoS attacks on three opensource MQTT brokers. Based on the proposed DoS attack scenarios, an IoT-MQTT attack dataset was generated to evaluate the e_ectiveness of the proposed framework to detect these malicious attacks. The DoS attack evaluation results obtained indicate that such attacks can overwhelm the MQTT brokers resources even when legitimate access to it was denied and resources were restricted. The evaluations also indicate that the proposed DoS attack scenarios can signi_cantly increase the MQTT message delay, especially in QoS2 messages causing heavy tail latencies. In addition, the proposed MQTT features showed high attack detection accuracy compared to simply using TCP based features to detect MQTT based attacks. It was also observed that the protocol _eld size and length based features drastically reduced the false positive rates and hence, are suitable for detecting IoT based attacks

    Security in 5G-Enabled Internet of Things Communication: Issues: Challenges, and Future Research Roadmap

    Get PDF
    5G mobile communication systems promote the mobile network to not only interconnect people, but also interconnect and control the machine and other devices. 5G-enabled Internet of Things (IoT) communication environment supports a wide-variety of applications, such as remote surgery, self-driving car, virtual reality, flying IoT drones, security and surveillance and many more. These applications help and assist the routine works of the community. In such communication environment, all the devices and users communicate through the Internet. Therefore, this communication agonizes from different types of security and privacy issues. It is also vulnerable to different types of possible attacks (for example, replay, impersonation, password reckoning, physical device stealing, session key computation, privileged-insider, malware, man-in-the-middle, malicious routing, and so on). It is then very crucial to protect the infrastructure of 5G-enabled IoT communication environment against these attacks. This necessitates the researchers working in this domain to propose various types of security protocols under different types of categories, like key management, user authentication/device authentication, access control/user access control and intrusion detection. In this survey paper, the details of various system models (i.e., network model and threat model) required for 5G-enabled IoT communication environment are provided. The details of security requirements and attacks possible in this communication environment are further added. The different types of security protocols are also provided. The analysis and comparison of the existing security protocols in 5G-enabled IoT communication environment are conducted. Some of the future research challenges and directions in the security of 5G-enabled IoT environment are displayed. The motivation of this work is to bring the details of different types of security protocols in 5G-enabled IoT under one roof so that the future researchers will be benefited with the conducted work

    IoT Health Devices: Exploring Security Risks in the Connected Landscape

    Get PDF
    The concept of the Internet of Things (IoT) spans decades, and the same can be said for its inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential in expanding care. However, the application of the IoT in healthcare is fraught with an array of challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and deeper degrees of damage possible to both consumers and their confidence within health systems, as a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs) are developed, a diverse range of attacks are possible. To understand the risks in this new landscape, it is important to understand the architecture of IoTHDs, operations, and the social dynamics that may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay the groundwork for better understanding security risks in emerging IoTHD modalities through a multi-layer approach, and suggest means for improved governance and interaction. We also discuss technological innovations expected to set the stage for novel exploits leading into the middle and latter parts of the 21st century

    Threats to Journalists from the Consumer Internet of Things

    Get PDF
    Threats associated with the consumer Internet of Things (IoT) may particu-larly inhibit the work and wellbeing of journalists, especially because of the danger of technological surveillance and the imperative to protect con-fidential sources. These issues may have knock-on effects on societal sta-bility and democratic processes if press freedom is eroded. Still, journalists remain unaware of potential IoT threats, and so are unable to incorporate them into risk assessments or to advise their sources. This shows a clear gap in the literature, requiring immediate attention. This article therefore identi-fies and organises distinctive and novel threats to journalism from the con-sumer IoT. The article presents a novel conceptualisation of threats to the press in six categories: regulatory gaps, legal threats, profiling threats, track-ing threats, data and device modification threats, and networked devices threats. Each of the threats in these categories includes a description and hypothetical consequences that include real-life ways in which IoT devices can be used to inhibit journalistic work, building on interdisciplinary liter-ature analysis and expert interviews. In so doing, this article synthesises technical information about IoT device capabilities with human security and privacy requirements tailored to a specific at-risk population: journal-ists. It is therefore important for cyber science scholarship to address the contemporary and emerging risks associated with IoT devices to vulnerable groups such as journalists. This exploratory conceptualisation enables the evidence-based conceptual evolution of understandings of cyber security risks to journalists

    Defending Against IoT-Enabled DDoS Attacks at Critical Vantage Points on the Internet

    Get PDF
    The number of Internet of Things (IoT) devices continues to grow every year. Unfortunately, with the rise of IoT devices, the Internet is also witnessing a rise in the number and scale of IoT-enabled distributed denial-of-service (DDoS) attacks. However, there is a lack of network-based solutions targeted directly for IoT networks to address the problem of IoT-enabled DDoS. Unlike most security approaches for IoT which focus on hardening device security through hardware and/or software modification, which in many cases is infeasible, we introduce network-based approaches for addressing IoT-enabled DDoS attacks. We argue that in order to effectively defend the Internet against IoT-enabled DDoS attacks, it is necessary to consider network-wide defense at critical vantage points on the Internet. This dissertation is focused on three inherently connected and complimentary components: (1) preventing IoT devices from being turned into DDoS bots by inspecting traffic towards IoT networks at an upstream ISP/IXP, (2) detecting DDoS traffic leaving an IoT network by inspecting traffic at its gateway, and (3) mitigating attacks as close to the devices in an IoT network originating DDoS traffic. To this end, we present three security solutions to address the three aforementioned components to defend against IoT-enabled DDoS attacks
    • …
    corecore