5,967 research outputs found

    A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

    Get PDF
    This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.Comment: The paper is accepted in Neural Computatio

    Gaussian-Process-based Robot Learning from Demonstration

    Full text link
    Endowed with higher levels of autonomy, robots are required to perform increasingly complex manipulation tasks. Learning from demonstration is arising as a promising paradigm for transferring skills to robots. It allows to implicitly learn task constraints from observing the motion executed by a human teacher, which can enable adaptive behavior. We present a novel Gaussian-Process-based learning from demonstration approach. This probabilistic representation allows to generalize over multiple demonstrations, and encode variability along the different phases of the task. In this paper, we address how Gaussian Processes can be used to effectively learn a policy from trajectories in task space. We also present a method to efficiently adapt the policy to fulfill new requirements, and to modulate the robot behavior as a function of task variability. This approach is illustrated through a real-world application using the TIAGo robot.Comment: 8 pages, 10 figure

    Robot eye-hand coordination learning by watching human demonstrations: a task function approximation approach

    Full text link
    We present a robot eye-hand coordination learning method that can directly learn visual task specification by watching human demonstrations. Task specification is represented as a task function, which is learned using inverse reinforcement learning(IRL) by inferring differential rewards between state changes. The learned task function is then used as continuous feedbacks in an uncalibrated visual servoing(UVS) controller designed for the execution phase. Our proposed method can directly learn from raw videos, which removes the need for hand-engineered task specification. It can also provide task interpretability by directly approximating the task function. Besides, benefiting from the use of a traditional UVS controller, our training process is efficient and the learned policy is independent from a particular robot platform. Various experiments were designed to show that, for a certain DOF task, our method can adapt to task/environment variances in target positions, backgrounds, illuminations, and occlusions without prior retraining.Comment: Accepted in ICRA 201

    Exploring the Limitations of Behavior Cloning for Autonomous Driving

    Get PDF
    Driving requires reacting to a wide variety of complex environment conditions and agent behaviors. Explicitly modeling each possible scenario is unrealistic. In contrast, imitation learning can, in theory, leverage data from large fleets of human-driven cars. Behavior cloning in particular has been successfully used to learn simple visuomotor policies end-to-end, but scaling to the full spectrum of driving behaviors remains an unsolved problem. In this paper, we propose a new benchmark to experimentally investigate the scalability and limitations of behavior cloning. We show that behavior cloning leads to state-of-the-art results, including in unseen environments, executing complex lateral and longitudinal maneuvers without these reactions being explicitly programmed. However, we confirm well-known limitations (due to dataset bias and overfitting), new generalization issues (due to dynamic objects and the lack of a causal model), and training instability requiring further research before behavior cloning can graduate to real-world driving. The code of the studied behavior cloning approaches can be found at https://github.com/felipecode/coiltraine
    corecore