1,906 research outputs found

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

    Get PDF
    Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system

    Learning Generalization and Adaptation of Movement Primitives for Humanoid Robots

    Get PDF

    A Continuous Grasp Representation for the Imitation Learning of Grasps on Humanoid Robots

    Get PDF
    Models and methods are presented which enable a humanoid robot to learn reusable, adaptive grasping skills. Mechanisms and principles in human grasp behavior are studied. The findings are used to develop a grasp representation capable of retaining specific motion characteristics and of adapting to different objects and tasks. Based on the representation a framework is proposed which enables the robot to observe human grasping, learn grasp representations, and infer executable grasping actions

    Imitation learning with dynamic movement primitives

    Get PDF
    Scientists have been working on making robots act like human beings for decades. Therefore, how to imitate human motion has became a popular academic topic in recent years. Nevertheless, there are infinite trajectories between two points in three-dimensional space. As a result, imitation learning, which is an algorithm of teaching from demonstrations, is utilized for learning human motion. Dynamic Movement Primitives (DMPs) is a framework for learning trajectories from demonstrations. Likewise, DMPs can also learn orientations given rotational movement's data. Also, the simulation is implemented on Robot Baxter which has seven degrees of freedom (DOF) and the Inverse Kinematic (IK) solver has been pre-programmed in the robot, which means that it is able to control a robot system as long as both translational and rotational data are provided. Taking advantage of DMPs, complex motor movements can achieve task-oriented regeneration without parametric adjustment and consideration of instability. In this work, discrete DMPs is utilized as the framework of the whole system. The sample task is to move the objects into the target area using Robot Baxter which is a robotic arm-hand system. For more effective learning, a weighted learning algorithm called Local Weighted Regression (LWR) is implemented. To achieve the goal, the weights of basis functions are firstly trained from the demonstration using DMPs framework as well as LWR. Then, regard the weights as learning parameters and substitute the weights, desired initial state, desired goal state as well as time-correlated parameters into a DMPs framework. Ultimately, the translational and rotational data for a new task-specific trajectory is generated. The visualized results are simulated and shown in Virtual Robot Experimentation Platform (VREP). For accomplishing the tasks better, independent DMP is used for each translation or rotation axis. With relatively low computational cost, motions with relatively high complexity can also be achieved. Moreover, the task-oriented movements can always be successfully stabilized even though there are some spatial scaling and transformation as well as time scaling. Twelve videos are included in supplementary materials of this thesis. The videos mainly describe the simulation results of Robot Baxter shown on Virtual Robot Experimentation Platform (VREP). The specific information can be found in the appendix

    A Review of Compliant Movement Primitives

    Get PDF
    Dynamical models of robots performing tasks in contact with objects or the environment are difficult to obtain. Therefore, different methods of learning the dynamics of tasks have been proposed. In this chapter, we present a method that provides the joint torques needed to execute a task in a compliant and at the same time accurate manner. The presented method of compliant movement primitives (CMPs), which consists of the task kinematical and dynamical trajectories, goes beyond mere reproduction of previously learned motions. Using statistical generalization, the method allows to generate new, previously untrained trajectories. Furthermore, the use of transition graphs allows us to combine parts of previously learned motions and thus generate new ones. In the chapter, we provide a brief overview of this research topic in the literature, followed by an in-depth explanation of the compliant movement primitives framework, with details on both statistical generalization and transition graphs. An extensive experimental evaluation demonstrates the applicability and the usefulness of the approach

    Neural Dynamic Movement Primitives -- a survey

    Full text link
    One of the most important challenges in robotics is producing accurate trajectories and controlling their dynamic parameters so that the robots can perform different tasks. The ability to provide such motion control is closely related to how such movements are encoded. Advances on deep learning have had a strong repercussion in the development of novel approaches for Dynamic Movement Primitives. In this work, we survey scientific literature related to Neural Dynamic Movement Primitives, to complement existing surveys on Dynamic Movement Primitives

    Probabilistic Models of Motor Production

    Get PDF
    N. Bernstein defined the ability of the central neural system (CNS) to control many degrees of freedom of a physical body with all its redundancy and flexibility as the main problem in motor control. He pointed at that man-made mechanisms usually have one, sometimes two degrees of freedom (DOF); when the number of DOF increases further, it becomes prohibitively hard to control them. The brain, however, seems to perform such control effortlessly. He suggested the way the brain might deal with it: when a motor skill is being acquired, the brain artificially limits the degrees of freedoms, leaving only one or two. As the skill level increases, the brain gradually "frees" the previously fixed DOF, applying control when needed and in directions which have to be corrected, eventually arriving to the control scheme where all the DOF are "free". This approach of reducing the dimensionality of motor control remains relevant even today. One the possibles solutions of the Bernstetin's problem is the hypothesis of motor primitives (MPs) - small building blocks that constitute complex movements and facilitite motor learnirng and task completion. Just like in the visual system, having a homogenious hierarchical architecture built of similar computational elements may be beneficial. Studying such a complicated object as brain, it is important to define at which level of details one works and which questions one aims to answer. David Marr suggested three levels of analysis: 1. computational, analysing which problem the system solves; 2. algorithmic, questioning which representation the system uses and which computations it performs; 3. implementational, finding how such computations are performed by neurons in the brain. In this thesis we stay at the first two levels, seeking for the basic representation of motor output. In this work we present a new model of motor primitives that comprises multiple interacting latent dynamical systems, and give it a full Bayesian treatment. Modelling within the Bayesian framework, in my opinion, must become the new standard in hypothesis testing in neuroscience. Only the Bayesian framework gives us guarantees when dealing with the inevitable plethora of hidden variables and uncertainty. The special type of coupling of dynamical systems we proposed, based on the Product of Experts, has many natural interpretations in the Bayesian framework. If the dynamical systems run in parallel, it yields Bayesian cue integration. If they are organized hierarchically due to serial coupling, we get hierarchical priors over the dynamics. If one of the dynamical systems represents sensory state, we arrive to the sensory-motor primitives. The compact representation that follows from the variational treatment allows learning of a motor primitives library. Learned separately, combined motion can be represented as a matrix of coupling values. We performed a set of experiments to compare different models of motor primitives. In a series of 2-alternative forced choice (2AFC) experiments participants were discriminating natural and synthesised movements, thus running a graphics Turing test. When available, Bayesian model score predicted the naturalness of the perceived movements. For simple movements, like walking, Bayesian model comparison and psychophysics tests indicate that one dynamical system is sufficient to describe the data. For more complex movements, like walking and waving, motion can be better represented as a set of coupled dynamical systems. We also experimentally confirmed that Bayesian treatment of model learning on motion data is superior to the simple point estimate of latent parameters. Experiments with non-periodic movements show that they do not benefit from more complex latent dynamics, despite having high kinematic complexity. By having a fully Bayesian models, we could quantitatively disentangle the influence of motion dynamics and pose on the perception of naturalness. We confirmed that rich and correct dynamics is more important than the kinematic representation. There are numerous further directions of research. In the models we devised, for multiple parts, even though the latent dynamics was factorized on a set of interacting systems, the kinematic parts were completely independent. Thus, interaction between the kinematic parts could be mediated only by the latent dynamics interactions. A more flexible model would allow a dense interaction on the kinematic level too. Another important problem relates to the representation of time in Markov chains. Discrete time Markov chains form an approximation to continuous dynamics. As time step is assumed to be fixed, we face with the problem of time step selection. Time is also not a explicit parameter in Markov chains. This also prohibits explicit optimization of time as parameter and reasoning (inference) about it. For example, in optimal control boundary conditions are usually set at exact time points, which is not an ecological scenario, where time is usually a parameter of optimization. Making time an explicit parameter in dynamics may alleviate this
    corecore