7,979 research outputs found

    Meta-Learning with Context-Agnostic Initialisations

    Get PDF
    Meta-learning approaches have addressed few-shot problems by finding initialisations suited for fine-tuning to target tasks. Often there are additional properties within training data (which we refer to as context), not relevant to the target task, which act as a distractor to meta-learning, particularly when the target task contains examples from a novel context not seen during training. We address this oversight by incorporating a context-adversarial component into the meta-learning process. This produces an initialisation for fine-tuning to target which is both context-agnostic and task-generalised. We evaluate our approach on three commonly used meta-learning algorithms and two problems. We demonstrate our context-agnostic meta-learning improves results in each case. First, we report on Omniglot few-shot character classification, using alphabets as context. An average improvement of 4.3% is observed across methods and tasks when classifying characters from an unseen alphabet. Second, we evaluate on a dataset for personalised energy expenditure predictions from video, using participant knowledge as context. We demonstrate that context-agnostic meta-learning decreases the average mean square error by 30%

    EMO: Episodic Memory Optimization for Few-Shot Meta-Learning

    Full text link
    Few-shot meta-learning presents a challenge for gradient descent optimization due to the limited number of training samples per task. To address this issue, we propose an episodic memory optimization for meta-learning, we call \emph{EMO}, which is inspired by the human ability to recall past learning experiences from the brain's memory. EMO retains the gradient history of past experienced tasks in external memory, enabling few-shot learning in a memory-augmented way. By learning to retain and recall the learning process of past training tasks, EMO nudges parameter updates in the right direction, even when the gradients provided by a limited number of examples are uninformative. We prove theoretically that our algorithm converges for smooth, strongly convex objectives. EMO is generic, flexible, and model-agnostic, making it a simple plug-and-play optimizer that can be seamlessly embedded into existing optimization-based few-shot meta-learning approaches. Empirical results show that EMO scales well with most few-shot classification benchmarks and improves the performance of optimization-based meta-learning methods, resulting in accelerated convergence.Comment: Accepted by CoLLAs 202

    Multi-Modal Fusion by Meta-Initialization

    Full text link
    When experience is scarce, models may have insufficient information to adapt to a new task. In this case, auxiliary information - such as a textual description of the task - can enable improved task inference and adaptation. In this work, we propose an extension to the Model-Agnostic Meta-Learning algorithm (MAML), which allows the model to adapt using auxiliary information as well as task experience. Our method, Fusion by Meta-Initialization (FuMI), conditions the model initialization on auxiliary information using a hypernetwork, rather than learning a single, task-agnostic initialization. Furthermore, motivated by the shortcomings of existing multi-modal few-shot learning benchmarks, we constructed iNat-Anim - a large-scale image classification dataset with succinct and visually pertinent textual class descriptions. On iNat-Anim, FuMI significantly outperforms uni-modal baselines such as MAML in the few-shot regime. The code for this project and a dataset exploration tool for iNat-Anim are publicly available at https://github.com/s-a-malik/multi-few .Comment: The first two authors contributed equall

    Graph Neural Network Expressivity and Meta-Learning for Molecular Property Regression

    Full text link
    We demonstrate the applicability of model-agnostic algorithms for meta-learning, specifically Reptile, to GNN models in molecular regression tasks. Using meta-learning we are able to learn new chemical prediction tasks with only a few model updates, as compared to using randomly initialized GNNs which require learning each regression task from scratch. We experimentally show that GNN layer expressivity is correlated to improved meta-learning. Additionally, we also experiment with GNN emsembles which yield best performance and rapid convergence for k-shot learning
    • …
    corecore