1,154 research outputs found

    Task mapping and mesh topology exploration for an FPGA-based network on chip

    No full text
    International audienceTask mapping strategies on NoC (Network-on-Chip) have a huge impact on the timing performance and power consumption. So does the to-pology. In this paper, we describe the exploration flow of task mapping algorithms using different NoC mesh shapes. The flow is used to evaluate timing and energy consumption based on a NoC emulation platform. It is open to any task mapping algorithms and to any shapes of NoC mesh. A heterogeneous (PC and FPGA) platform is used to fully perform each step of the flow. The experiments demonstrate that the most appropriate task mapping strategy and the most suitable NoC shape strongly depend on the algorithm used. Depending on the timing latency results obtained and the FPGA resources used, the designer can select the appropriate task mapping strategy on the suitable shape in a short exploration time and with precise timing evaluation

    Design and Programming Methods for Reconfigurable Multi-Core Architectures using a Network-on-Chip-Centric Approach

    Get PDF
    A current trend in the semiconductor industry is the use of Multi-Processor Systems-on-Chip (MPSoCs) for a wide variety of applications such as image processing, automotive, multimedia, and robotic systems. Most applications gain performance advantages by executing parallel tasks on multiple processors due to the inherent parallelism. Moreover, heterogeneous structures provide high performance/energy efficiency, since application-specific processing elements (PEs) can be exploited. The increasing number of heterogeneous PEs leads to challenging communication requirements. To overcome this challenge, Networks-on-Chip (NoCs) have emerged as scalable on-chip interconnect. Nevertheless, NoCs have to deal with many design parameters such as virtual channels, routing algorithms and buffering techniques to fulfill the system requirements. This thesis highly contributes to the state-of-the-art of FPGA-based MPSoCs and NoCs. In the following, the three major contributions are introduced. As a first major contribution, a novel router concept is presented that efficiently utilizes communication times by performing sequences of arithmetic operations on the data that is transferred. The internal input buffers of the routers are exchanged with processing units that are capable of executing operations. Two different architectures of such processing units are presented. The first architecture provides multiply and accumulate operations which are often used in signal processing applications. The second architecture introduced as Application-Specific Instruction Set Routers (ASIRs) contains a processing unit capable of executing any operation and hence, it is not limited to multiply and accumulate operations. An internal processing core located in ASIRs can be developed in C/C++ using high-level synthesis. The second major contribution comprises application and performance explorations of the novel router concept. Models that approximate the achievable speedup and the end-to-end latency of ASIRs are derived and discussed to show the benefits in terms of performance. Furthermore, two applications using an ASIR-based MPSoC are implemented and evaluated on a Xilinx Zynq SoC. The first application is an image processing algorithm consisting of a Sobel filter, an RGB-to-Grayscale conversion, and a threshold operation. The second application is a system that helps visually impaired people by navigating them through unknown indoor environments. A Light Detection and Ranging (LIDAR) sensor scans the environment, while Inertial Measurement Units (IMUs) measure the orientation of the user to generate an audio signal that makes the distance as well as the orientation of obstacles audible. This application consists of multiple parallel tasks that are mapped to an ASIR-based MPSoC. Both applications show the performance advantages of ASIRs compared to a conventional NoC-based MPSoC. Furthermore, dynamic partial reconfiguration in terms of relocation and security aspects are investigated. The third major contribution refers to development and programming methodologies of NoC-based MPSoCs. A software-defined approach is presented that combines the design and programming of heterogeneous MPSoCs. In addition, a Kahn-Process-Network (KPN) –based model is designed to describe parallel applications for MPSoCs using ASIRs. The KPN-based model is extended to support not only the mapping of tasks to NoC-based MPSoCs but also the mapping to ASIR-based MPSoCs. A static mapping methodology is presented that assigns tasks to ASIRs and processors for a given KPN-model. The impact of external hardware components such as sensors, actuators and accelerators connected to the processors is also discussed which makes the approach of high interest for embedded systems

    Implementation and Evaluation of an NoC Architecture for FPGAs

    Get PDF
    The Networks-on-Chip (NoC) approach for designing Systems-on-Chip (SoC) is currently emerging as an advanced concept for overcoming the scalability and efficiency problems of traditional bus-based systems. A great deal of theoretical research has been done in this area that provides good insight and shows promising results. There is a great need for research in hardware implementation of NoC-based systems to determine the feasibility of implementing various topologies and protocols, and also to accurately determine what design tradeoffs are involved in NoC implementation. This thesis addresses the challenges of implementing an NoC-based system on FPGAs for running real benchmark applications. The NoC used a mesh topology and circuit-switched communication protocol. An experimental framework was developed that allowed implementation of NoC-based system from a high level specification, using the Celoxica Handel-C hardware description language. Two test applications: charged couple device (CCD) and JPEG were developed in Handel-C to be used as our benchmark applications. Both benchmarks are computational expensive and require large quantities of data transfer that will test the NoC system. Implementation results show that the NoC-based system gives superior area utilization and speed performance compared to the bus-based system, running the same benchmarks

    NoC Emulation based on Partial Reconfiguration

    Full text link
    This paper studies the possibly of using partial reconfiguration for achieving acceleration of the emulation process of Systems on Chip based on Networks on Chip (NoC). The main advantage of using partial reconfiguration is that re-synthesis of the systems is not required and thus the emulation process can be accelerated. The paper focuses on the description of a method for building partial runtime reconfigurable systems and its application for building a NoC emulation framework. The paper also includes a brief description of all the building elements of the emulation framework and a use case that demonstrates the advantages of the use of partial reconfiguration for emulation

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Mppsocgen: A framework for automatic generation of mppsoc architecture

    Full text link
    Automatic code generation is a standard method in software engineering since it improves the code consistency and reduces the overall development time. In this context, this paper presents a design flow for automatic VHDL code generation of mppSoC (massively parallel processing System-on-Chip) configuration. Indeed, depending on the application requirements, a framework of Netbeans Platform Software Tool named MppSoCGEN was developed in order to accelerate the design process of complex mppSoC. Starting from an architecture parameters design, VHDL code will be automatically generated using parsing method. Configuration rules are proposed to have a correct and valid VHDL syntax configuration. Finally, an automatic generation of Processor Elements and network topologies models of mppSoC architecture will be done for Stratix II device family. Our framework improves its flexibility on Netbeans 5.5 version and centrino duo Core 2GHz with 22 Kbytes and 3 seconds average runtime. Experimental results for reduction algorithm validate our MppSoCGEN design flow and demonstrate the efficiency of generated architectures.Comment: 16 pages; International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 201

    Physical parameter-aware Networks-on-Chip design

    Get PDF
    PhD ThesisNetworks-on-Chip (NoCs) have been proposed as a scalable, reliable and power-efficient communication fabric for chip multiprocessors (CMPs) and multiprocessor systems-on-chip (MPSoCs). NoCs determine both the performance and the reliability of such systems, with a significant power demand that is expected to increase due to developments in both technology and architecture. In terms of architecture, an important trend in many-core systems architecture is to increase the number of cores on a chip while reducing their individual complexity. This trend increases communication power relative to computation power. Moreover, technology-wise, power-hungry wires are dominating logic as power consumers as technology scales down. For these reasons, the design of future very large scale integration (VLSI) systems is moving from being computation-centric to communication-centric. On the other hand, chip’s physical parameters integrity, especially power and thermal integrity, is crucial for reliable VLSI systems. However, guaranteeing this integrity is becoming increasingly difficult with the higher scale of integration due to increased power density and operating frequencies that result in continuously increasing temperature and voltage drops in the chip. This is a challenge that may prevent further shrinking of devices. Thus, tackling the challenge of power and thermal integrity of future many-core systems at only one level of abstraction, the chip and package design for example, is no longer sufficient to ensure the integrity of physical parameters. New designtime and run-time strategies may need to work together at different levels of abstraction, such as package, application, network, to provide the required physical parameter integrity for these large systems. This necessitates strategies that work at the level of the on-chip network with its rising power budget. This thesis proposes models, techniques and architectures to improve power and thermal integrity of Network-on-Chip (NoC)-based many-core systems. The thesis is composed of two major parts: i) minimization and modelling of power supply variations to improve power integrity; and ii) dynamic thermal adaptation to improve thermal integrity. This thesis makes four major contributions. The first is a computational model of on-chip power supply variations in NoCs. The proposed model embeds a power delivery model, an NoC activity simulator and a power model. The model is verified with SPICE simulation and employed to analyse power supply variations in synthetic and real NoC workloads. Novel observations regarding power supply noise correlation with different traffic patterns and routing algorithms are found. The second is a new application mapping strategy aiming vii to minimize power supply noise in NoCs. This is achieved by defining a new metric, switching activity density, and employing a force-based objective function that results in minimizing switching density. Significant reductions in power supply noise (PSN) are achieved with a low energy penalty. This reduction in PSN also results in a better link timing accuracy. The third contribution is a new dynamic thermal-adaptive routing strategy to effectively diffuse heat from the NoC-based threedimensional (3D) CMPs, using a dynamic programming (DP)-based distributed control architecture. Moreover, a new approach for efficient extension of two-dimensional (2D) partially-adaptive routing algorithms to 3D is presented. This approach improves three-dimensional networkon- chip (3D NoC) routing adaptivity while ensuring deadlock-freeness. Finally, the proposed thermal-adaptive routing is implemented in field-programmable gate array (FPGA), and implementation challenges, for both thermal sensing and the dynamic control architecture are addressed. The proposed routing implementation is evaluated in terms of both functionality and performance. The methodologies and architectures proposed in this thesis open a new direction for improving the power and thermal integrity of future NoC-based 2D and 3D many-core architectures
    • …
    corecore