133,165 research outputs found

    Enabling Distributed Applications Optimization in Cloud Environment

    Get PDF
    The past few years have seen dramatic growth in the popularity of public clouds, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Container-as-a-Service (CaaS). In both commercial and scientific fields, quick environment setup and application deployment become a mandatory requirement. As a result, more and more organizations choose cloud environments instead of setting up the environment by themselves from scratch. The cloud computing resources such as server engines, orchestration, and the underlying server resources are served to the users as a service from a cloud provider. Most of the applications that run in public clouds are the distributed applications, also called multi-tier applications, which require a set of servers, a service ensemble, that cooperate and communicate to jointly provide a certain service or accomplish a task. Moreover, a few research efforts are conducting in providing an overall solution for distributed applications optimization in the public cloud. In this dissertation, we present three systems that enable distributed applications optimization: (1) the first part introduces DocMan, a toolset for detecting containerized application’s dependencies in CaaS clouds, (2) the second part introduces a system to deal with hot/cold blocks in distributed applications, (3) the third part introduces a system named FP4S, a novel fragment-based parallel state recovery mechanism that can handle many simultaneous failures for a large number of concurrently running stream applications

    A Unified Approach for the Integration of Distributed Heterogeneous Software Components

    Get PDF
    Proceedings of the 2001 Monterey Workshop (Sponsored by DARPA, ONR, ARO and AFOSR), pp: 109-119, Monterey, CA, 2001Distributed systems are omnipresent these days. Creating efficient and robust software for such systems is a highly complex task. One possible approach to developing distributed software is based on the integration of heterogeneous sofwtare components that are scattered across many machines. In this paper, a comprehensive framework that will allow a seamless integration of distributed heterogeneous software components is proposed. This framework involves: a) a metamodel for components and associated hierarchical setup for indicating the contracts and constraints of the components. b) an automatic generation of glues and wrappers, based on a designer's specifications, for achieving interoperability, c) a formal mechanism for precisely describing the meta-model, and d) a formalization of quality of service (QoS) offered by each component and ensemble of components. A case study from the domain of distributed information filtering is described in the context of this framework.This material is based upon work supported by, or in part by, the U.S. Office of Naval Research under award number N00014-01-1-0746. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under contract/grant number 40473-MA

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator

    Join-Idle-Queue with Service Elasticity: Large-Scale Asymptotics of a Non-monotone System

    Get PDF
    We consider the model of a token-based joint auto-scaling and load balancing strategy, proposed in a recent paper by Mukherjee, Dhara, Borst, and van Leeuwaarden (SIGMETRICS '17, arXiv:1703.08373), which offers an efficient scalable implementation and yet achieves asymptotically optimal steady-state delay performance and energy consumption as the number of servers N→∞N\to\infty. In the above work, the asymptotic results are obtained under the assumption that the queues have fixed-size finite buffers, and therefore the fundamental question of stability of the proposed scheme with infinite buffers was left open. In this paper, we address this fundamental stability question. The system stability under the usual subcritical load assumption is not automatic. Moreover, the stability may not even hold for all NN. The key challenge stems from the fact that the process lacks monotonicity, which has been the powerful primary tool for establishing stability in load balancing models. We develop a novel method to prove that the subcritically loaded system is stable for large enough NN, and establish convergence of steady-state distributions to the optimal one, as N→∞N \to \infty. The method goes beyond the state of the art techniques -- it uses an induction-based idea and a "weak monotonicity" property of the model; this technique is of independent interest and may have broader applicability.Comment: 30 page
    • …
    corecore