21,260 research outputs found

    The Fuzzy Feedback Scheduling of Real-Time Middleware in Cyber-Physical Systems for Robot Control

    Get PDF
    Cyber-physical systems for robot control integrate the computing units and physical devices, which are real-time systems with periodic events. This work focuses on CPS task scheduling in order to solve the problem of slow response and packet loss caused by the interaction between each service. The two-level fuzzy feedback scheduling scheme is designed to adjust the task priority and period according to the combined effects of the response time and packet loss. Empirical results verify the rationality of the cyber-physical system architecture for robot control and illustrate the feasibility of the fuzzy feedback scheduling method

    Optimization and Control of Cyber-Physical Vehicle Systems

    Get PDF
    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined

    Towards Compositional Mixed-Criticality Real-Time Scheduling in Open Systems

    Get PDF
    Although many cyber-physical systems are both mixed-criticality system and compositional system, there are little work on intersection of mixed-criticality system and compositional system. We propose novel concepts for task-level criticality mode and reconsider temporal isolation in terms of compositional mixed-criticality scheduling

    Utility-Aware Scheduling of Stochastic Real-Time Systems

    Get PDF
    Time utility functions offer a reasonably general way to describe the complex timing constraints of real-time and cyber-physical systems. However, utility-aware scheduling policy design is an open research problem. In particular, scheduling policies that optimize expected utility accrual are needed for real-time and cyber-physical domains. This dissertation addresses the problem of utility-aware scheduling for systems with periodic real-time task sets and stochastic non-preemptive execution intervals. We model these systems as Markov Decision Processes. This model provides an evaluation framework by which different scheduling policies can be compared. By solving the Markov Decision Process we can derive value-optimal scheduling policies for moderate sized problems. However, the time and memory complexity of computing and storing value-optimal scheduling policies also necessitates the exploration of other more scalable solutions. We consider heuristic schedulers, including a generalization we have developed for the existing Utility Accrual Packet Scheduling Algorithm. We compare several heuristics under soft and hard real-time conditions, different load conditions, and different classes of time utility functions. Based on these evaluations we present guidelines for which heuristics are best suited to particular scheduling criteria. Finally, we address the memory complexity of value-optimal scheduling, and examine trade-offs between optimality and memory complexity. We show that it is possible to derive good low complexity scheduling decision functions based on a synthesis of heuristics and reduced-memory approximations of the value-optimal scheduling policy

    Shop-floor scheduling as a competitive advantage:A study on the relevance of cyber-physical systems in different manufacturing contexts

    Get PDF
    The aim of this paper is to analyse the relevance of cyber-physical systems (CPS) in different manufacturing contexts and to study whether CPS could provide companies with competitive advantage by carrying out a better scheduling task. This paper is developed under the umbrella of contingency theory which states that certain technologies and practices are not universally applicable or relevant in every context; thus, only certain companies will benefit from using particular technologies or practices. The conclusion of this paper, developed through deductive reasoning and supported by preliminary simulation experiments and statistical tests, is that factories with an uncertain and demanding market environment as well as a complex production process could benefit the most from implementing a CPS at shop-floor level since a cyber-physical shop-floor will provide all the capabilities needed to carry out the complex scheduling task associated with this type of context. On the other hand, an increase in scheduling performance due to a CPS implementation in factories with simple production flows and stable demand could not be substantial enough to overcome the high cost of installing a fully operational CPS

    Coincidence Problem in CPS Simulations: the R-ROSACE Case Study

    Get PDF
    This paper presents ongoing work on the formalism of Cyber-Physical Systems (CPS) simulations. We focus on a distributed simulations architecture for CPS, where the running simulators exist in concurrent and sequential domains. This architecture of simulation allows the expression of structural and behavioral constraints on the simulation. We call scheduling of simulation the temporal organization of the simulators interconnection. In this paper we address the problem of the interconnected simulations representativity. To do so, we highlight the similarities and differences between task scheduling and simulation scheduling, and then we discuss the constraints expressible over that simulation scheduling. Finally, we illustrate a constraint on simulation scheduling with an extension of the open source case study ROSACE, implemented with CERTI, a compliant High-Level Architecture (HLA) RunTime Infrastructure (RTI). HLA is an IEEE standard for distributed simulation

    Coincidence Problem in CPS Simulations: the R-ROSACE Case Study

    Get PDF
    This paper presents ongoing work on the formalism of Cyber-Physical Systems (CPS) simulations. We focus on a distributed simulations architecture for CPS, where the running simulators exist in concurrent and sequential domains. This architecture of simulation allows the expression of structural and behavioral constraints on the simulation. We call scheduling of simulation the temporal organization of the simulators interconnection. In this paper we address the problem of the interconnected simulations representativity. To do so, we highlight the similarities and differences between task scheduling and simulation scheduling, and then we discuss the constraints expressible over that simulation scheduling. Finally, we illustrate a constraint on simulation scheduling with an extension of the open source case study ROSACE, implemented with CERTI, a compliant High- Level Architecture (HLA) RunTime Infrastructure (RTI). HLA is an IEEE standard for distributed simulation
    corecore