166,883 research outputs found

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    A conceptual architecture for semantic web services development and deployment

    Get PDF
    Several extensions of the Web Services Framework (WSF) have been proposed. The combination with Semantic Web technologies introduces a notion of semantics, which can enhance scalability through automation. Service composition to processes is an equally important issue. Ontology technology – the core of the Semantic Web – can be the central building block of an extension endeavour. We present a conceptual architecture for ontology-based Web service development and deployment. The development of service-based software systems within the WSF is gaining increasing importance. We show how ontologies can integrate models, languages, infrastructure, and activities within this architecture to support reuse and composition of semantic Web services

    A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection

    Get PDF
    Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud and effective manner. The basic idea of SOC is to understand users'\ud requirements for SBAs first, and then discover and select relevant\ud services (i.e., that fit closely functional requirements) and offer\ud a high Quality of Service (QoS). Understanding users’ requirements\ud is already achieved by existing requirement engineering approaches\ud (e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud manner. However, discovering and selecting relevant and high QoS\ud services are still challenging tasks that require time and effort\ud due to the increasing number of available Web services. In this paper,\ud we propose a requirement-centric approach which allows: (i) modeling\ud users’ requirements for SBAs with the MAP formalism and specifying\ud required services using an Intentional Service Model (ISM); (ii)\ud discovering services by querying the Web service search engine Service-Finder\ud and using keywords extracted from the specifications provided by\ud the ISM; and(iii) selecting automatically relevant and high QoS services\ud by applying Formal Concept Analysis (FCA). We validate our approach\ud by performing experiments on an e-books application. The experimental\ud results show that our approach allows the selection of relevant and\ud high QoS services with a high accuracy (the average precision is\ud 89.41%) and efficiency (the average recall is 95.43%)

    Exploiting rules and processes for increasing flexibility in service composition

    Get PDF
    Recent trends in the use of service oriented architecture for designing, developing, managing, and using distributed applications have resulted in an increasing number of independently developed and physically distributed services. These services can be discovered, selected and composed to develop new applications and to meet emerging user requirements. Service composition is generally defined on the basis of business processes in which the underlying composition logic is guided by specifying control and data flows through Web service interfaces. User demands as well as the services themselves may change over time, which leads to replacing or adjusting the composition logic of previously defined processes. Coping with change is still one of the fundamental problems in current process based composition approaches. In this paper, we exploit declarative and imperative design styles to achieve better flexibility in service composition
    • 

    corecore