63,874 research outputs found

    An agent-based architecture for managing the provision of community care - the INCA (Intelligent Community Alarm) experience

    Get PDF
    Community Care is an area that requires extensive cooperation between independent agencies, each of which needs to meet its own objectives and targets. None are engaged solely in the delivery of community care, and need to integrate the service with their other responsibilities in a coherent and efficient manner. Agent technology provides the means by which effective cooperation can take place without compromising the essential security of both the client and the agencies involved as the appropriate set of responses can be generated through negotiation between the parties without the need for access to the main information repositories that would be necessary with conventional collaboration models. The autonomous nature of agents also means that a variety of agents can cooperate together with various local capabilities, so long as they conform to the relevant messaging requirements. This allows a variety of agents, with capabilities tailored to the carers to which they are attached to be developed so that cost-effective solutions can be provided. </p

    Decision-Theoretic Planning with Person Trajectory Prediction for Social Navigation

    Get PDF
    Robots navigating in a social way should reason about people intentions when acting. For instance, in applications like robot guidance or meeting with a person, the robot has to consider the goals of the people. Intentions are inherently nonobservable, and thus we propose Partially Observable Markov Decision Processes (POMDPs) as a decision-making tool for these applications. One of the issues with POMDPs is that the prediction models are usually handcrafted. In this paper, we use machine learning techniques to build prediction models from observations. A novel technique is employed to discover points of interest (goals) in the environment, and a variant of Growing Hidden Markov Models (GHMMs) is used to learn the transition probabilities of the POMDP. The approach is applied to an autonomous telepresence robot
    corecore