10,385 research outputs found

    Suitable task allocation in intelligent systems for assistive environments

    Get PDF
    The growing need of technological assistance to provide support to people with special needs demands for systems more and more efficient and with better performances. With this aim, this work tries to advance in a multirobot platform that allows the coordinated control of different agents and other elements in the environment to achieve an autonomous behavior based on the user’s needs or will. Therefore, this environment is structured according to the potentiality of each agent and elements of this environment and of the dynamic context, to generate the adequate actuation plans and the coordination of their execution.Peer ReviewedPostprint (author's final draft

    Analysis of Dynamic Task Allocation in Multi-Robot Systems

    Full text link
    Dynamic task allocation is an essential requirement for multi-robot systems operating in unknown dynamic environments. It allows robots to change their behavior in response to environmental changes or actions of other robots in order to improve overall system performance. Emergent coordination algorithms for task allocation that use only local sensing and no direct communication between robots are attractive because they are robust and scalable. However, a lack of formal analysis tools makes emergent coordination algorithms difficult to design. In this paper we present a mathematical model of a general dynamic task allocation mechanism. Robots using this mechanism have to choose between two types of task, and the goal is to achieve a desired task division in the absence of explicit communication and global knowledge. Robots estimate the state of the environment from repeated local observations and decide which task to choose based on these observations. We model the robots and observations as stochastic processes and study the dynamics of the collective behavior. Specifically, we analyze the effect that the number of observations and the choice of the decision function have on the performance of the system. The mathematical models are validated in a multi-robot multi-foraging scenario. The model's predictions agree very closely with experimental results from sensor-based simulations.Comment: Preprint version of the paper published in International Journal of Robotics, March 2006, Volume 25, pp. 225-24

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    Function allocation theory for creative design

    Get PDF
    Function structure influences on systems architecture (or product architecture). This paper discusses a design method for creative design solutions that focuses on the allocation of functions. It first proposes a theory called “Function Allocation Theory” to allocate a function to an appropriate subsystem or component during the systems decomposition phase. By doing so, the complexity of design solutions can be reduced. The theory is applied to some examples including collaborative robots and robotics maintenance. Finally, the paper illustrates a case study of designing a reaction-free fastening system using this theory

    Distributed and Centralized Task Allocation: When and Where to Use Them

    No full text
    Self-organisation is frequently advocated as the solution for managing large, dynamic systems. Distributed algorithms are implicitly designed for infinitely large problems, while small systems are regarded as being controllable using traditional, centralised approaches. Many real-world systems, however, do not fit conveniently into these "small" or "large" categories, resulting in a range of cases where the optimal solution is ambiguous. This difficulty is exacerbated by enthusiasts of either approach constructing problems that suit their preferred control architecture. We address this ambiguity by building an abstract model of task allocation in a community of specialised agents. We are inspired by the problem of work distribution in distributed satellite systems, but the model is also relevant to the resource allocation problems in distributed robotics, autonomic computing and wireless sensor networks. We compare the behaviour of a self-organising, market-based task allocation strategy to a classical approach that uses a central controller with global knowledge. The objective is not to prove one mechanism inherently superior to the other; instead we are interested in the regions of problem space where each of them dominates. Simulation is used to explore the trade-off between energy consumption and robustness in a system of intermediate size, with fixed communication costs and varying rates of component failure. We identify boundaries between regions in the parameter space where one or the other architecture will be favoured. This allows us to derive guidelines for system designers, thus contributing to the development of a disciplined approach to controlling distributed systems using self-organising mechanisms

    Multi-Agent Task Allocation for Robot Soccer

    Get PDF
    This is the published version. Copyright De GruyterThis paper models and analyzes task allocation methodologies for multiagent systems. The evaluation process was implemented as a collection of simulated soccer matches. A soccer-simulation software package was used as the test-bed as it provided the necessary features for implementing and testing the methodologies. The methodologies were tested through competitions with a number of available soccer strategies. Soccer game scores, communication, robustness, fault-tolerance, and replanning capabilities were the parameters used as the evaluation criteria for the mul1i-agent systems

    A nonparametric Bayesian approach toward robot learning by demonstration

    No full text
    In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios

    A macroscopic analytical model of collaboration in distributed robotic systems

    Get PDF
    In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG gefÜrderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible
    • …
    corecore