4,024 research outputs found

    Wireless sensor systems in indoor situation modeling II (WISM II)

    Get PDF
    fi=vertaisarvioimaton|en=nonPeerReviewed

    Embedded System Object Tracking Using Webcam

    Get PDF
    The extensive availability of hardware devices and intensive expansion their computing power have been the catalyst behind the rapid development of computer vision. In this project, an implementation of object tracking in an inexpensive and small embedded system platform is presented. The tracking system comprised of two Raspberry Pis with two different cameras used: a webcam and Raspicam module. Three communication connection models of the system are discussed in this paper for establishing communication between the two Raspberry Pis. Data sharing between these two hardware platforms is the proposed solution for resolving the limited processing power each platform possesses. The SimpleCV, an open source framework that provides free computer vision libraries that is useful for object detection and tracking algorithm development

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Navigation for automatic guided vehicles using omnidirectional optical sensing

    Get PDF
    Thesis (M. Tech. (Engineering: Electrical)) -- Central University of technology, Free State, 2013Automatic Guided Vehicles (AGVs) are being used more frequently in a manufacturing environment. These AGVs are navigated in many different ways, utilising multiple types of sensors for detecting the environment like distance, obstacles, and a set route. Different algorithms or methods are then used to utilise this environmental information for navigation purposes applied onto the AGV for control purposes. Developing a platform that could be easily reconfigured in alternative route applications utilising vision was one of the aims of the research. In this research such sensors detecting the environment was replaced and/or minimised by the use of a single, omnidirectional Webcam picture stream utilising an own developed mirror and Perspex tube setup. The area of interest in each frame was extracted saving on computational recourses and time. By utilising image processing, the vehicle was navigated on a predetermined route. Different edge detection methods and segmentation methods were investigated on this vision signal for route and sign navigation. Prewitt edge detection was eventually implemented, Hough transfers used for border detection and Kalman filtering for minimising border detected noise for staying on the navigated route. Reconfigurability was added to the route layout by coloured signs incorporated in the navigation process. The result was the manipulation of a number of AGV’s, each on its own designated coloured signed route. This route could be reconfigured by the operator with no programming alteration or intervention. The YCbCr colour space signal was implemented in detecting specific control signs for alternative colour route navigation. The result was used generating commands to control the AGV through serial commands sent on a laptop’s Universal Serial Bus (USB) port with a PIC microcontroller interface board controlling the motors by means of pulse width modulation (PWM). A total MATLAB® software development platform was utilised by implementing written M-files, Simulink® models, masked function blocks and .mat files for sourcing the workspace variables and generating executable files. This continuous development system lends itself to speedy evaluation and implementation of image processing options on the AGV. All the work done in the thesis was validated by simulations using actual data and by physical experimentation

    Towards an autonomous vision-based unmanned aerial system againstwildlife poachers

    Get PDF
    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing.Peer Reviewe

    Towards an autonomous vision-based unmanned aerial system against wildlife poachers.

    Get PDF
    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing

    Indoor Localization Based on Wireless Sensor Networks

    Get PDF
    Indoor localization techniques based on wireless sensor networks (WSNs) have been increasingly used in various applications such as factory automation, intelligent building, facility management, security, and health care. However, existing localization techniques cannot meet the accuracy requirement of many applications. Meanwhile, some localization algorithms are affected by environmental conditions and cannot be directly used in an indoor environment. Cost is another limitation of the existing localization algorithms. This thesis is to address those issues of indoor localization through a new Sensing Displacement (SD) approach. It consists of four major parts: platform design, SD algorithm development, SD algorithm improvement, and evaluation. Platform design includes hardware design and software design. Hardware design is the foundation for the system, which consists of the motion sensors embedded on mobile nodes and WSN design. Motion sensors are used to collect motion information for the localizing objects. A WSN is designed according to the characteristics of an indoor scenario. A Cloud Computing based system architecture is developed to support the software design of the proposed system. In order to address the special issues in an indoor environment, a new Sensing Displacement algorithm is developed, which estimates displacement of a node based on the motion information from the sensors embedded on the node. The sensor assembly consists of acceleration sensors and gyroscope sensors, separately sensing the acceleration and angular velocity of the localizing object. The first SD algorithm is designed in a way to be used in a 2-D localization demo to validate the proposal. A detailed analysis of the results of 2-D SD algorithm reveals that there are two critical issues (sensor’s noise and cumulative error) affecting the measurement results. Therefore a low-pass filter and a modified Kalman filter are introduced to solve the issue of sensor’s noises. An inertia tensor factor is introduced to address the cumulative error in a 3-D SD algorithm. Finally, the proposed SD algorithm is evaluated against the commercial AeroScout (WiFi-RFID) system and the ZigBee based Fingerprint algorithm

    Integrasjon av et minimalistisk sett av sensorer for kartlegging og lokalisering av landbruksroboter

    Get PDF
    Robots have recently become ubiquitous in many aspects of daily life. For in-house applications there is vacuuming, mopping and lawn-mowing robots. Swarms of robots have been used in Amazon warehouses for several years. Autonomous driving cars, despite being set back by several safety issues, are undeniably becoming the standard of the automobile industry. Not just being useful for commercial applications, robots can perform various tasks, such as inspecting hazardous sites, taking part in search-and-rescue missions. Regardless of end-user applications, autonomy plays a crucial role in modern robots. The essential capabilities required for autonomous operations are mapping, localization and navigation. The goal of this thesis is to develop a new approach to solve the problems of mapping, localization, and navigation for autonomous robots in agriculture. This type of environment poses some unique challenges such as repetitive patterns, large-scale sparse features environments, in comparison to other scenarios such as urban/cities, where the abundance of good features such as pavements, buildings, road lanes, traffic signs, etc., exists. In outdoor agricultural environments, a robot can rely on a Global Navigation Satellite System (GNSS) to determine its whereabouts. It is often limited to the robot's activities to accessible GNSS signal areas. It would fail for indoor environments. In this case, different types of exteroceptive sensors such as (RGB, Depth, Thermal) cameras, laser scanner, Light Detection and Ranging (LiDAR) and proprioceptive sensors such as Inertial Measurement Unit (IMU), wheel-encoders can be fused to better estimate the robot's states. Generic approaches of combining several different sensors often yield superior estimation results but they are not always optimal in terms of cost-effectiveness, high modularity, reusability, and interchangeability. For agricultural robots, it is equally important for being robust for long term operations as well as being cost-effective for mass production. We tackle this challenge by exploring and selectively using a handful of sensors such as RGB-D cameras, LiDAR and IMU for representative agricultural environments. The sensor fusion algorithms provide high precision and robustness for mapping and localization while at the same time assuring cost-effectiveness by employing only the necessary sensors for a task at hand. In this thesis, we extend the LiDAR mapping and localization methods for normal urban/city scenarios to cope with the agricultural environments where the presence of slopes, vegetation, trees render the traditional approaches to fail. Our mapping method substantially reduces the memory footprint for map storing, which is important for large-scale farms. We show how to handle the localization problem in dynamic growing strawberry polytunnels by using only a stereo visual-inertial (VI) and depth sensor to extract and track only invariant features. This eliminates the need for remapping to deal with dynamic scenes. Also, for a demonstration of the minimalistic requirement for autonomous agricultural robots, we show the ability to autonomously traverse between rows in a difficult environment of zigzag-liked polytunnel using only a laser scanner. Furthermore, we present an autonomous navigation capability by using only a camera without explicitly performing mapping or localization. Finally, our mapping and localization methods are generic and platform-agnostic, which can be applied to different types of agricultural robots. All contributions presented in this thesis have been tested and validated on real robots in real agricultural environments. All approaches have been published or submitted in peer-reviewed conference papers and journal articles.Roboter har nylig blitt standard i mange deler av hverdagen. I hjemmet har vi støvsuger-, vaske- og gressklippende roboter. Svermer med roboter har blitt brukt av Amazons varehus i mange år. Autonome selvkjørende biler, til tross for å ha vært satt tilbake av sikkerhetshensyn, er udiskutabelt på vei til å bli standarden innen bilbransjen. Roboter har mer nytte enn rent kommersielt bruk. Roboter kan utføre forskjellige oppgaver, som å inspisere farlige områder og delta i leteoppdrag. Uansett hva sluttbrukeren velger å gjøre, spiller autonomi en viktig rolle i moderne roboter. De essensielle egenskapene for autonome operasjoner i landbruket er kartlegging, lokalisering og navigering. Denne type miljø gir spesielle utfordringer som repetitive mønstre og storskala miljø med få landskapsdetaljer, sammenlignet med andre steder, som urbane-/bymiljø, hvor det finnes mange landskapsdetaljer som fortau, bygninger, trafikkfelt, trafikkskilt, etc. I utendørs jordbruksmiljø kan en robot bruke Global Navigation Satellite System (GNSS) til å navigere sine omgivelser. Dette begrenser robotens aktiviteter til områder med tilgjengelig GNSS signaler. Dette vil ikke fungere i miljøer innendørs. I ett slikt tilfelle vil reseptorer mot det eksterne miljø som (RGB-, dybde-, temperatur-) kameraer, laserskannere, «Light detection and Ranging» (LiDAR) og propriopsjonære detektorer som treghetssensorer (IMU) og hjulenkodere kunne brukes sammen for å bedre kunne estimere robotens tilstand. Generisk kombinering av forskjellige sensorer fører til overlegne estimeringsresultater, men er ofte suboptimale med hensyn på kostnadseffektivitet, moduleringingsgrad og utbyttbarhet. For landbruksroboter så er det like viktig med robusthet for lang tids bruk som kostnadseffektivitet for masseproduksjon. Vi taklet denne utfordringen med å utforske og selektivt velge en håndfull sensorer som RGB-D kameraer, LiDAR og IMU for representative landbruksmiljø. Algoritmen som kombinerer sensorsignalene gir en høy presisjonsgrad og robusthet for kartlegging og lokalisering, og gir samtidig kostnadseffektivitet med å bare bruke de nødvendige sensorene for oppgaven som skal utføres. I denne avhandlingen utvider vi en LiDAR kartlegging og lokaliseringsmetode normalt brukt i urbane/bymiljø til å takle landbruksmiljø, hvor hellinger, vegetasjon og trær gjør at tradisjonelle metoder mislykkes. Vår metode reduserer signifikant lagringsbehovet for kartlagring, noe som er viktig for storskala gårder. Vi viser hvordan lokaliseringsproblemet i dynamisk voksende jordbær-polytuneller kan løses ved å bruke en stereo visuel inertiel (VI) og en dybdesensor for å ekstrahere statiske objekter. Dette eliminerer behovet å kartlegge på nytt for å klare dynamiske scener. I tillegg demonstrerer vi de minimalistiske kravene for autonome jordbruksroboter. Vi viser robotens evne til å bevege seg autonomt mellom rader i ett vanskelig miljø med polytuneller i sikksakk-mønstre ved bruk av kun en laserskanner. Videre presenterer vi en autonom navigeringsevne ved bruk av kun ett kamera uten å eksplisitt kartlegge eller lokalisere. Til slutt viser vi at kartleggings- og lokaliseringsmetodene er generiske og platform-agnostiske, noe som kan brukes med flere typer jordbruksroboter. Alle bidrag presentert i denne avhandlingen har blitt testet og validert med ekte roboter i ekte landbruksmiljø. Alle forsøk har blitt publisert eller sendt til fagfellevurderte konferansepapirer og journalartikler
    corecore