3,744 research outputs found

    Hot-spot analysis for drug discovery targeting protein-protein interactions

    Get PDF
    Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach.

    Get PDF
    To address the problem of specificity in G-protein coupled receptor (GPCR) drug discovery, there has been tremendous recent interest in allosteric drugs that bind at sites topographically distinct from the orthosteric site. Unfortunately, structure-based drug design of allosteric GPCR ligands has been frustrated by the paucity of structural data for allosteric binding sites, making a strong case for predictive computational methods. In this work, we map the surfaces of the beta1 (beta1AR) and beta2 (beta2AR) adrenergic receptor structures to detect a series of five potentially druggable allosteric sites. We employ the FTMAP algorithm to identify 'hot spots' with affinity for a variety of organic probe molecules corresponding to drug fragments. Our work is distinguished by an ensemble-based approach, whereby we map diverse receptor conformations taken from molecular dynamics (MD) simulations totaling approximately 0.5 micros. Our results reveal distinct pockets formed at both solvent-exposed and lipid-exposed cavities, which we interpret in light of experimental data and which may constitute novel targets for GPCR drug discovery. This mapping data can now serve to drive a combination of fragment-based and virtual screening approaches for the discovery of small molecules that bind at these sites and which may offer highly selective therapies

    Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    Get PDF
    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the “off” and “on” allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target

    On dynamic network entropy in cancer

    Get PDF
    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte

    Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites

    Get PDF
    A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron variants. By using a combination of atomistic simulations, a dynamics network analysis, and an allostery-guided network screening of binding pockets in the conformational ensembles of the BA.1 and BA.2 spike conformations, we identified all experimentally known allosteric sites and discovered significant variant-specific differences in the distribution of binding sites in the BA.1 and BA.2 trimers. This study provided a structural characterization of the predicted cryptic pockets and captured the experimentally known allosteric sites, revealing the critical role of conformational plasticity in modulating the distribution and cross-talk between functional binding sites. We found that mutational and dynamic changes in the BA.1 variant can induce the remodeling and stabilization of a known druggable pocket in the N-terminal domain, while this pocket is drastically altered and may no longer be available for ligand binding in the BA.2 variant. Our results predicted the experimentally known allosteric site in the receptor-binding domain that remains stable and ranks as the most favorable site in the conformational ensembles of the BA.2 variant but could become fragmented and less probable in BA.1 conformations. We also uncovered several cryptic pockets formed at the inter-domain and inter-protomer interface, including functional regions of the S2 subunit and stem helix region, which are consistent with the known role of pocket residues in modulating conformational transitions and antibody recognition. The results of this study are particularly significant for understanding the dynamic and network features of the universe of available binding pockets in spike proteins, as well as the effects of the Omicron-variant-specific modulation of preferential druggable pockets. The exploration of predicted druggable sites can present a new and previously underappreciated opportunity for therapeutic interventions for Omicron variants through the conformation-selective and variant-specific targeting of functional sites involved in allosteric changes

    Computational Approaches for Predicting Drug Targets

    Get PDF
    This thesis reports the development of several computational approaches to predict human disease proteins and to assess their value as drug targets, using in-house domain functional families (CATH FunFams). CATH-FunFams comprise evolutionary related protein domains with high structural and functional similarity. External resources were used to identify proteins associated with disease and their genetic variations. These were then mapped to the CATH-FunFams together with information on drugs bound to any relatives within the FunFam. A number of novel approaches were then used to predict the proteins likely to be driving disease and to assess whether drugs could be repurposed within the FunFams for targeting these putative driver proteins. The first work chapter of this thesis reports the mapping of drugs to CATHFunFams to identify druggable FunFams based on statistical overrepresentation of drug targets within the FunFam. 81 druggable CATH-FunFams were identified and the dispersion of their relatives on a human protein interaction network was analysed to assess their propensity to be associated with side effects. In the second work chapter, putative drug targets for bladder cancer were identified using a novel computational protocol that expands a set of known bladder cancer genes with genes highly expressed in bladder cancer and highly associated with known bladder cancer genes in a human protein interaction network. 35 new bladder cancer targets were identified in druggable FunFams, for some of which FDA approved drugs could be repurposed from other protein domains in the FunFam. In the final work chapter, protein kinases and kinase inhibitors were analysed. These are an important class of human drug targets. A novel classification protocol was applied to give a comprehensive classification of the kinases which was benchmarked and compared with other widely used kinase classifications. Druginformation from ChEMBL was mapped to the Kinase-FunFams and analyses of protein network characteristics of the kinase relatives in each FunFam used to identify those families likely to be associated with side effects

    Structural and dynamic determinants for highly selective RET kinase inhibition reveal cryptic druggability.

    Get PDF
    The structural and dynamic determinants for highly selective RET kinase inhibition are poorly understood. Here we demonstrate by applying an integrated structural, computational and biochemical approach that the druggability landscape of the RET active site is determined by the conformational setting of the ATP-binding (P-) loop and its coordination with the αC helix. Open and intermediate P-loop structures display additional druggable vulnerabilities within the active site that were not exploited by first generation RET inhibitors. We identify a cryptic pocket adjacent to the catalytic lysine formed by K758, L760, E768 and L772, that we name the post-lysine pocket, with higher druggability potential than the adenine-binding site and with important implications in the regulation of phospho-tyrosine kinase activity. Crystal structure and simulation data show that the binding mode of highly-selective RET kinase inhibitors LOXO-292 and BLU-667 is controlled by a synchronous open P-loop and αC-in configuration that allows accessibility to the post-lysine pocket. Molecular dynamics simulation show that these inhibitors efficiently occupy the post-lysine pocket with high stability through the simulation time-scale (300 ns), with both inhibitors forming hydrophobic contacts in the pocket further stabilized by pi-cation interactions with the catalytic K758. Engineered mutants targeting the post-lysine pocket impact on inhibitor binding and sensitivity, as well as RET tyrosine kinase activity. The identification of the post-lysine pocket as a cryptic druggable vulnerability in the RET kinase and its exploitation by second generation RET inhibitors has important implications for future drug design and the development of personalized therapies for patients with RET-driven cancers.We thank the Centro Nacional de Investigaciones Oncológicas (CNIO), which is supported by the Instituto de Salud Carlos III and recognized as a “Severo Ochoa” Centre of Excellence (ref. CEX2019-000891-S, awarded by MCIN/AEI/ 10.13039/501100011033) for core funding and supporting this study. This work was further supported by projects: BFU2017-86710-R funded by MCIN/ AEI /10.13039/501100011033 and ERDF “A way of making Europe”, PID2020-117580RB-I00 funded by MCIN/ AEI /10.13039/501100011033, RYC-2016-1938 funded by MCIN/AEI /10.13039/501100011033 and ESF “Investing in your future”, and a Marie Curie WHRI-ACADEMY International grant (number 608765) to IP-M and a CNIO-Friends predoctoral Carmen Gloria Bonnet Fellowship to MAS.N

    Expanding the druggable space of the LSD1/CoREST epigenetic target: new potential binding regions for drug-like molecules, peptides, protein partners, and chromatin.

    Get PDF
    Lysine specific demethylase-1 (LSD1/KDM1A) in complex with its corepressor protein CoREST is a promising target for epigenetic drugs. No therapeutic that targets LSD1/CoREST, however, has been reported to date. Recently, extended molecular dynamics (MD) simulations indicated that LSD1/CoREST nanoscale clamp dynamics is regulated by substrate binding and highlighted key hinge points of this large-scale motion as well as the relevance of local residue dynamics. Prompted by the urgent need for new molecular probes and inhibitors to understand LSD1/CoREST interactions with small-molecules, peptides, protein partners, and chromatin, we undertake here a configurational ensemble approach to expand LSD1/CoREST druggability. The independent algorithms FTMap and SiteMap and our newly developed Druggable Site Visualizer (DSV) software tool were used to predict and inspect favorable binding sites. We find that the hinge points revealed by MD simulations at the SANT2/Tower interface, at the SWIRM/AOD interface, and at the AOD/Tower interface are new targets for the discovery of molecular probes to block association of LSD1/CoREST with chromatin or protein partners. A fourth region was also predicted from simulated configurational ensembles and was experimentally validated to have strong binding propensity. The observation that this prediction would be prevented when using only the X-ray structures available (including the X-ray structure bound to the same peptide) underscores the relevance of protein dynamics in protein interactions. A fifth region was highlighted corresponding to a small pocket on the AOD domain. This study sets the basis for future virtual screening campaigns targeting the five novel regions reported herein and for the design of LSD1/CoREST mutants to probe LSD1/CoREST binding with chromatin and various protein partners
    corecore