58,139 research outputs found

    An Optimization Framework for Semi-Supervised and Transfer Learning using Multiple Classifiers and Clusterers

    Full text link
    Unsupervised models can provide supplementary soft constraints to help classify new, "target" data since similar instances in the target set are more likely to share the same class label. Such models can also help detect possible differences between training and target distributions, which is useful in applications where concept drift may take place, as in transfer learning settings. This paper describes a general optimization framework that takes as input class membership estimates from existing classifiers learnt on previously encountered "source" data, as well as a similarity matrix from a cluster ensemble operating solely on the target data to be classified, and yields a consensus labeling of the target data. This framework admits a wide range of loss functions and classification/clustering methods. It exploits properties of Bregman divergences in conjunction with Legendre duality to yield a principled and scalable approach. A variety of experiments show that the proposed framework can yield results substantially superior to those provided by popular transductive learning techniques or by naively applying classifiers learnt on the original task to the target data

    Online Transfer Learning in Reinforcement Learning Domains

    Full text link
    This paper proposes an online transfer framework to capture the interaction among agents and shows that current transfer learning in reinforcement learning is a special case of online transfer. Furthermore, this paper re-characterizes existing agents-teaching-agents methods as online transfer and analyze one such teaching method in three ways. First, the convergence of Q-learning and Sarsa with tabular representation with a finite budget is proven. Second, the convergence of Q-learning and Sarsa with linear function approximation is established. Third, the we show the asymptotic performance cannot be hurt through teaching. Additionally, all theoretical results are empirically validated.Comment: 18 pages, 2 figure

    Deep Transfer Learning with Joint Adaptation Networks

    Full text link
    Deep networks have been successfully applied to learn transferable features for adapting models from a source domain to a different target domain. In this paper, we present joint adaptation networks (JAN), which learn a transfer network by aligning the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion. Adversarial training strategy is adopted to maximize JMMD such that the distributions of the source and target domains are made more distinguishable. Learning can be performed by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Experiments testify that our model yields state of the art results on standard datasets.Comment: 34th International Conference on Machine Learnin

    Interactive Reinforcement Learning with Dynamic Reuse of Prior Knowledge from Human/Agent's Demonstration

    Full text link
    Reinforcement learning has enjoyed multiple successes in recent years. However, these successes typically require very large amounts of data before an agent achieves acceptable performance. This paper introduces a novel way of combating such requirements by leveraging existing (human or agent) knowledge. In particular, this paper uses demonstrations from agents and humans, allowing an untrained agent to quickly achieve high performance. We empirically compare with, and highlight the weakness of, HAT and CHAT, methods of transferring knowledge from a source agent/human to a target agent. This paper introduces an effective transfer approach, DRoP, combining the offline knowledge (demonstrations recorded before learning) with online confidence-based performance analysis. DRoP dynamically involves the demonstrator's knowledge, integrating it into the reinforcement learning agent's online learning loop to achieve efficient and robust learning

    Multi-Adversarial Domain Adaptation

    Full text link
    Recent advances in deep domain adaptation reveal that adversarial learning can be embedded into deep networks to learn transferable features that reduce distribution discrepancy between the source and target domains. Existing domain adversarial adaptation methods based on single domain discriminator only align the source and target data distributions without exploiting the complex multimode structures. In this paper, we present a multi-adversarial domain adaptation (MADA) approach, which captures multimode structures to enable fine-grained alignment of different data distributions based on multiple domain discriminators. The adaptation can be achieved by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Empirical evidence demonstrates that the proposed model outperforms state of the art methods on standard domain adaptation datasets.Comment: AAAI 2018 Oral. arXiv admin note: substantial text overlap with arXiv:1705.10667, arXiv:1707.0790

    Cross-Domain Transfer in Reinforcement Learning using Target Apprentice

    Full text link
    In this paper, we present a new approach to Transfer Learning (TL) in Reinforcement Learning (RL) for cross-domain tasks. Many of the available techniques approach the transfer architecture as a method of speeding up the target task learning. We propose to adapt and reuse the mapped source task optimal-policy directly in related domains. We show the optimal policy from a related source task can be near optimal in target domain provided an adaptive policy accounts for the model error between target and source. The main benefit of this policy augmentation is generalizing policies across multiple related domains without having to re-learn the new tasks. Our results show that this architecture leads to better sample efficiency in the transfer, reducing sample complexity of target task learning to target apprentice learning.Comment: To appear as conference paper in ICRA 201

    Task Transfer by Preference-Based Cost Learning

    Full text link
    The goal of task transfer in reinforcement learning is migrating the action policy of an agent to the target task from the source task. Given their successes on robotic action planning, current methods mostly rely on two requirements: exactly-relevant expert demonstrations or the explicitly-coded cost function on target task, both of which, however, are inconvenient to obtain in practice. In this paper, we relax these two strong conditions by developing a novel task transfer framework where the expert preference is applied as a guidance. In particular, we alternate the following two steps: Firstly, letting experts apply pre-defined preference rules to select related expert demonstrates for the target task. Secondly, based on the selection result, we learn the target cost function and trajectory distribution simultaneously via enhanced Adversarial MaxEnt IRL and generate more trajectories by the learned target distribution for the next preference selection. The theoretical analysis on the distribution learning and convergence of the proposed algorithm are provided. Extensive simulations on several benchmarks have been conducted for further verifying the effectiveness of the proposed method.Comment: Accepted to AAAI 2019. Mingxuan Jing and Xiaojian Ma contributed equally to this wor

    Bounds on the Minimax Rate for Estimating a Prior over a VC Class from Independent Learning Tasks

    Full text link
    We study the optimal rates of convergence for estimating a prior distribution over a VC class from a sequence of independent data sets respectively labeled by independent target functions sampled from the prior. We specifically derive upper and lower bounds on the optimal rates under a smoothness condition on the correct prior, with the number of samples per data set equal the VC dimension. These results have implications for the improvements achievable via transfer learning. We additionally extend this setting to real-valued function, where we establish consistency of an estimator for the prior, and discuss an additional application to a preference elicitation problem in algorithmic economics

    Decomposition-Based Transfer Distance Metric Learning for Image Classification

    Full text link
    Distance metric learning (DML) is a critical factor for image analysis and pattern recognition. To learn a robust distance metric for a target task, we need abundant side information (i.e., the similarity/dissimilarity pairwise constraints over the labeled data), which is usually unavailable in practice due to the high labeling cost. This paper considers the transfer learning setting by exploiting the large quantity of side information from certain related, but different source tasks to help with target metric learning (with only a little side information). The state-of-the-art metric learning algorithms usually fail in this setting because the data distributions of the source task and target task are often quite different. We address this problem by assuming that the target distance metric lies in the space spanned by the eigenvectors of the source metrics (or other randomly generated bases). The target metric is represented as a combination of the base metrics, which are computed using the decomposed components of the source metrics (or simply a set of random bases); we call the proposed method, decomposition-based transfer DML (DTDML). In particular, DTDML learns a sparse combination of the base metrics to construct the target metric by forcing the target metric to be close to an integration of the source metrics. The main advantage of the proposed method compared with existing transfer metric learning approaches is that we directly learn the base metric coefficients instead of the target metric. To this end, far fewer variables need to be learned. We therefore obtain more reliable solutions given the limited side information and the optimization tends to be faster. Experiments on the popular handwritten image (digit, letter) classification and challenge natural image annotation tasks demonstrate the effectiveness of the proposed method

    Everything old is new again: A multi-view learning approach to learning using privileged information and distillation

    Full text link
    We adopt a multi-view approach for analyzing two knowledge transfer settings---learning using privileged information (LUPI) and distillation---in a common framework. Under reasonable assumptions about the complexities of hypothesis spaces, and being optimistic about the expected loss achievable by the student (in distillation) and a transformed teacher predictor (in LUPI), we show that encouraging agreement between the teacher and the student leads to reduced search space. As a result, improved convergence rate can be obtained with regularized empirical risk minimization
    • …
    corecore