1,109 research outputs found

    Multipath Exploitation-Based Indoor Target Localization Model Using Single Marginal Antenna

    Get PDF
    Recently, indoor target localization became an area of interest due to its diverse applications. In indoor target localization, surrounding environment creates multipath components, which can be exploited to aid in localization process. A number of studies have been proposed to employ multipath exploitation in localizing indoor targets. However, their localization errors can still be improved. This study proposed a new localization model based on multipath exploitation techniques by using triangulation method. Ultra-wide band signals were resolved and associated using marginal antenna-based scheme. The estimate of the target location was then obtained using measured round-trip time delays. The location was determined by applying the simple trigonometry on the triangle in which real radar, virtual radars, and the target location are the vertices of the triangle in question. Simulation results show that the proposed method has improved the localization error over a wide range of timing errors, target locations and room sizes with the overall maximum localization error of 1.4 m equivalent to 22.2% improvement as compared to 1.8 m localization error obtained using the method developed by the Muqaibel et al. (2017)

    2-D Coherence Factor for Sidelobe and Ghost Suppressions in Radar Imaging

    Get PDF
    The coherence factor (CF) is defined as the ratio of coherent power to incoherent power received by the radar aperture. The incoherent power is computed by the multi-antenna receiver based on only the spatial variable. In this respect, it is a one-dimensional (1-D) CF, and thereby the image sidelobes in down-range cannot be effectively suppressed. We propose a two-dimensional (2-D) CF by supplementing the 1-D CF by an incoherent sum dealing with the frequency dimension. In essence, we employ both spatial diversity and frequency diversity which, respectively, enhance imaging quality in cross range and range. Simulations and experimental results are provided to demonstrate the performance advantages of the proposed approach.Comment: 7 pages, 21 figure

    WiFi-based PCL for monitoring private airfields

    Get PDF
    In this article, the potential exploitation of WiFi-based PCL systems is investigated with reference to a real-world civil application in which these sensors are expected to nicely complement the existing technologies adopted for monitoring purposes, especially when operating against noncooperative targets. In particular, we consider the monitoring application of small private airstrips or airfields. With this terminology, we refer to open areas designated for the takeoff and landing of small aircrafts that, unlike an airport, have generally short and possibly unpaved runways (e.g., grass, dirt, sand, or gravel surfaces) and do not necessarily have terminals. More important, such areas usually are devoid of conventional technologies, equipment, or procedures adopted to guarantee safety and security in large aerodromes.There exist a huge number of small, privately owned, and unlicensed airfields around the world. Private aircraft owners mainly use these “airports” for recreational, single-person, or private flights for small groups and training flight purposes. In addition, residential airparks have proliferated in recent years, especially inthe United States, Canada, and South Africa. A residential airpark, or “fly-in community,” features common airstrips where homes with attached hangars allow owners to taxi from their hangar to a shared runway. In many cases, roads are dual use for both cars and planes.In such scenarios, the possibility to employ low-cost, compact, nonintrusive, and nontransmitting sensors as a way to improve safety and security with limited impact on the airstrips' users would be of great potential interest. To this purpose, WiFi-based passive radar sensors appear to be good candidates [23]. Therefore, we investigate their application against typical operative conditions experienced in the scenarios described earlier. The aim is to assess the capability to detect, localize, and track authorized and unauthorized targets that can be occupying the runway and the surrounding areas

    Through-the-Wall Imaging and Multipath Exploitation

    Get PDF
    We consider the problem of using electromagnetic sensing to estimate targets in complex environments, such as when they are hidden behind walls and other opaque objects. The often unknown electromagnetic interactions between the target and the surrounding area, make the problem challenging. To improve our results, we exploit information in the multipath of the objects surrounding both the target and the sensors. First, we estimate building layouts by using the jump-diffusion algorithm and employing prior knowledge about typical building layouts. We also take advantage of a detailed physical model that captures the scattering by the inner walls and efficiently utilizes the frequency bandwidth. We then localize targets hidden behind reinforced concrete walls. The sensing signals reflected from the targets are significantly distorted and attenuated by the embedded metal bars. Using the surface formulation of the method of moments, we model the response of the reinforced walls, and incorporate their transmission coefficients into the beamforming method to achieve better estimation accuracy. In a related effort, we utilize the sparsity constraint to improve electromagnetic imaging of hidden conducting targets, assuming that a set of equivalent sources can be substituted for the targets. We derive a linear measurement model and employ l1 regularization to identify the equivalent sources in the vicinity of the target surfaces. The proposed inverse method reconstructs the target shape in one or two steps, using single-frequency data. Our results are experimentally verified. Finally, we exploit the multipath from sensor-array platforms to facilitate direction finding. This in contrast to the usual approach, which utilizes the scattering close to the targets. We analyze the effect of the multipath in a statistical signal processing framework, and compute the Cramer-Rao bound to obtain the system resolution. We conduct experiments on a simple array platform to support our theoretical approach

    Improving the performance of a radio-frequency localization system in adverse outdoor applications

    Get PDF
    In outdoor RF localization systems, particularly where line of sight can not be guaranteed or where multipath effects are severe, information about the terrain may improve the position estimate's performance. Given the difficulties in obtaining real data, a ray-tracing fingerprint is a viable option. Nevertheless, although presenting good simulation results, the performance of systems trained with simulated features only suffer degradation when employed to process real-life data. This work intends to improve the localization accuracy when using ray-tracing fingerprints and a few field data obtained from an adverse environment where a large number of measurements is not an option. We employ a machine learning (ML) algorithm to explore the multipath information. We selected algorithms random forest and gradient boosting; both considered efficient tools in the literature. In a strict simulation scenario (simulated data for training, validating, and testing), we obtained the same good results found in the literature (error around 2 m). In a real-world system (simulated data for training, real data for validating and testing), both ML algorithms resulted in a mean positioning error around 100 ,m. We have also obtained experimental results for noisy (artificially added Gaussian noise) and mismatched (with a null subset of) features. From the simulations carried out in this work, our study revealed that enhancing the ML model with a few real-world data improves localization’s overall performance. From the machine ML algorithms employed herein, we also observed that, under noisy conditions, the random forest algorithm achieved a slightly better result than the gradient boosting algorithm. However, they achieved similar results in a mismatch experiment. This work’s practical implication is that multipath information, once rejected in old localization techniques, now represents a significant source of information whenever we have prior knowledge to train the ML algorithm

    Performance Limits and Geometric Properties of Array Localization

    Full text link
    Location-aware networks are of great importance and interest in both civil and military applications. This paper determines the localization accuracy of an agent, which is equipped with an antenna array and localizes itself using wireless measurements with anchor nodes, in a far-field environment. In view of the Cram\'er-Rao bound, we first derive the localization information for static scenarios and demonstrate that such information is a weighed sum of Fisher information matrices from each anchor-antenna measurement pair. Each matrix can be further decomposed into two parts: a distance part with intensity proportional to the squared baseband effective bandwidth of the transmitted signal and a direction part with intensity associated with the normalized anchor-antenna visual angle. Moreover, in dynamic scenarios, we show that the Doppler shift contributes additional direction information, with intensity determined by the agent velocity and the root mean squared time duration of the transmitted signal. In addition, two measures are proposed to evaluate the localization performance of wireless networks with different anchor-agent and array-antenna geometries, and both formulae and simulations are provided for typical anchor deployments and antenna arrays.Comment: to appear in IEEE Transactions on Information Theor

    Target DoA estimation in passive radar using non-uniform linear arrays and multiple frequency channels

    Get PDF
    In this paper we present a robust approach for target direction of arrival (DoA) estimation in passive radar that jointly exploits spatial and frequency diversity. Specifically we refer to a DVB-T based passive radar receiver equipped with a linear array of few antenna elements non-uniformly spaced in the horizontal dimension, able to collect multiple DVB-T channels simultaneously. We resort to a maximum likelihood (ML) approach to jointly exploit the target echoes collected across the antenna elements at multiple carrier frequencies. Along with an expected improvement in terms of DoA estimation accuracy, we show that the available spatial and frequency diversity can be fruitfully exploited to extend the unambiguous angular sector useful for DoA estimation, which represent an invaluable tool in many applications. To this purpose, a performance analysis is reported against experimental data collected by a multi-channel DVB-T based passive radar developed by Leonardo S.p.A

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF
    • …
    corecore