12 research outputs found

    Compensation of INS/LBL Navigation Errors in a Polynomial Sound-Speed-Profile

    Get PDF
    This paper presents an autonomous underwater vehicle (AUV) navigation scheme that pairs an inertial navigation system (INS) and a long baseline (LBL) acoustic positioning system. The INS is assigned to be the main navigation aid because of its faster rate. Meanwhile, the LBL provides position reference for compensation of the INS’ main inherent drawback, i.e., accumulating errors. However, the LBL has to deal with time-of-flight (ToF) measurements that may not be carried out under line-of-sight (LoS) circumstances. This is because the propagation speed of underwater acoustic waves is subject to the sound-speed-profile (SSP) of the area in question. This paper’s contribution is to consider the SSP in ToFs while addressing the above scheme. Specifically, the discrete approach to raytracing was implemented. For a given ToF, the Snell’s parameter of the wave is estimated and subsequently used to compute the horizontal range. The ToF results are then used to estimate the position of the AUV, while the  position is obtained from a depth sensor. It was shown by simulation that the estimators can provide navigation with accuracy <0.5 m2, as it manages to compensate for errors. Since the estimation of Snell’s parameter is prone to exhibit imaginary numbers, future work should consider a more robust method to tackle this problem

    Compensation of INS/LBL Navigation Errors in a Polynomial Sound-Speed-Profile

    Get PDF
    This paper presents an autonomous underwater vehicle (AUV) navigation scheme that pairs an inertial navigation system (INS) and a long baseline (LBL) acoustic positioning system. The INS is assigned to be the main navigation aid because of its faster rate. Meanwhile, the LBL provides position reference for compensation of the INS’ main inherent drawback, i.e., accumulating errors. However, the LBL has to deal with time-of-flight (ToF) measurements that may not be carried out under line-of-sight (LoS) circumstances. This is because the propagation speed of underwater acoustic waves is subject to the sound-speed-profile (SSP) of the area in question. This paper’s contribution is to consider the SSP in ToFs while addressing the above scheme. Specifically, the discrete approach to raytracing was implemented. For a given ToF, the Snell’s parameter of the wave is estimated and subsequently used to compute the horizontal range. The ToF results are then used to estimate the position of the AUV, while the  position is obtained from a depth sensor. It was shown by simulation that the estimators can provide navigation with accuracy <0.5 m2, as it manages to compensate for errors. Since the estimation of Snell’s parameter is prone to exhibit imaginary numbers, future work should consider a more robust method to tackle this problem

    Optimal path shape for range-only underwater target localization using a Wave Glider

    Get PDF
    Underwater localization using acoustic signals is one of the main components in a navigation system for an autonomous underwater vehicle (AUV) as a more accurate alternative to dead-reckoning techniques. Although different methods based on the idea of multiple beacons have been studied, other approaches use only one beacon, which reduces the system’s costs and deployment complexity. The inverse approach for single-beacon navigation is to use this method for target localization by an underwater or surface vehicle. In this paper, a method of range-only target localization using a Wave Glider is presented, for which simulations and sea tests have been conducted to determine optimal parameters to minimize acoustic energy use and search time, and to maximize location accuracy and precision. Finally, a field mission is presented, where a Benthic Rover (an autonomous seafloor vehicle) is localized and tracked using minimal human intervention. This mission shows, as an example, the power of using autonomous vehicles in collaboration for oceanographic research.Peer ReviewedPostprint (author's final draft

    Device-free Localization using Received Signal Strength Measurements in Radio Frequency Network

    Full text link
    Device-free localization (DFL) based on the received signal strength (RSS) measurements of radio frequency (RF)links is the method using RSS variation due to the presence of the target to localize the target without attaching any device. The majority of DFL methods utilize the fact the link will experience great attenuation when obstructed. Thus that localization accuracy depends on the model which describes the relationship between RSS loss caused by obstruction and the position of the target. The existing models is too rough to explain some phenomenon observed in the experiment measurements. In this paper, we propose a new model based on diffraction theory in which the target is modeled as a cylinder instead of a point mass. The proposed model can will greatly fits the experiment measurements and well explain the cases like link crossing and walking along the link line. Because the measurement model is nonlinear, particle filtering tracing is used to recursively give the approximate Bayesian estimation of the position. The posterior Cramer-Rao lower bound (PCRLB) of proposed tracking method is also derived. The results of field experiments with 8 radio sensors and a monitored area of 3.5m 3.5m show that the tracking error of proposed model is improved by at least 36 percent in the single target case and 25 percent in the two targets case compared to other models.Comment: This paper has been withdrawn by the author due to some mistake

    Color Filtering Localization for Three-Dimensional Underwater Acoustic Sensor Networks

    Full text link
    Accurate localization for mobile nodes has been an important and fundamental problem in underwater acoustic sensor networks (UASNs). The detection information returned from a mobile node is meaningful only if its location is known. In this paper, we propose two localization algorithms based on color filtering technology called PCFL and ACFL. PCFL and ACFL aim at collaboratively accomplishing accurate localization of underwater mobile nodes with minimum energy expenditure. They both adopt the overlapping signal region of task anchors which can communicate with the mobile node directly as the current sampling area. PCFL employs the projected distances between each of the task projections and the mobile node, while ACFL adopts the direct distance between each of the task anchors and the mobile node. Also the proportion factor of distance is proposed to weight the RGB values. By comparing the nearness degrees of the RGB sequences between the samples and the mobile node, samples can be filtered out. And the normalized nearness degrees are considered as the weighted standards to calculate coordinates of the mobile nodes. The simulation results show that the proposed methods have excellent localization performance and can timely localize the mobile node. The average localization error of PCFL can decline by about 30.4% than the AFLA method.Comment: 18 pages, 11 figures, 2 table

    Underwater Sensor Nodes and Networks

    Get PDF
    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field.Lloret, J. (2013). Underwater Sensor Nodes and Networks. Sensors. 13(9):11782-11796. doi:10.3390/s130911782S1178211796139Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Martinez, J. J., Myers, J. R., Carlson, T. J., Deng, Z. D., Rohrer, J. S., Caviggia, K. A., … Weiland, M. A. (2011). Design and Implementation of an Underwater Sound Recording Device. Sensors, 11(9), 8519-8535. doi:10.3390/s110908519Ardid, M., Martínez-Mora, J. A., Bou-Cabo, M., Larosa, G., Adrián-Martínez, S., & Llorens, C. D. (2012). Acoustic Transmitters for Underwater Neutrino Telescopes. Sensors, 12(4), 4113-4132. doi:10.3390/s120404113Baronti, F., Fantechi, G., Roncella, R., & Saletti, R. (2012). Wireless Sensor Node for Surface Seawater Density Measurements. Sensors, 12(3), 2954-2968. doi:10.3390/s120302954Mànuel, A., Roset, X., Rio, J. D., Toma, D. M., Carreras, N., Panahi, S. S., … Cadena, J. (2012). Ocean Bottom Seismometer: Design and Test of a Measurement System for Marine Seismology. Sensors, 12(3), 3693-3719. doi:10.3390/s120303693Jollymore, A., Johnson, M. S., & Hawthorne, I. (2012). Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream. Sensors, 12(4), 3798-3813. doi:10.3390/s120403798Won, T.-H., & Park, S.-J. (2012). Design and Implementation of an Omni-Directional Underwater Acoustic Micro-Modem Based on a Low-Power Micro-Controller Unit. Sensors, 12(2), 2309-2323. doi:10.3390/s120202309Sánchez, A., Blanc, S., Yuste, P., Perles, A., & Serrano, J. J. (2012). An Ultra-Low Power and Flexible Acoustic Modem Design to Develop Energy-Efficient Underwater Sensor Networks. Sensors, 12(6), 6837-6856. doi:10.3390/s120606837Shin, S.-Y., & Park, S.-H. (2011). A Cost Effective Block Framing Scheme for Underwater Communication. Sensors, 11(12), 11717-11735. doi:10.3390/s111211717Kim, Y., & Park, S.-H. (2011). A Query Result Merging Scheme for Providing Energy Efficiency in Underwater Sensor Networks. Sensors, 11(12), 11833-11855. doi:10.3390/s111211833Llor, J., & Malumbres, M. P. (2012). Underwater Wireless Sensor Networks: How Do Acoustic Propagation Models Impact the Performance of Higher-Level Protocols? Sensors, 12(2), 1312-1335. doi:10.3390/s120201312Zhang, G., Hovem, J. M., & Dong, H. (2012). Experimental Assessment of Different Receiver Structures for Underwater Acoustic Communications over Multipath Channels. Sensors, 12(2), 2118-2135. doi:10.3390/s120202118Ramezani, H., & Leus, G. (2012). Ranging in an Underwater Medium with Multiple Isogradient Sound Speed Profile Layers. Sensors, 12(3), 2996-3017. doi:10.3390/s120302996Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s120404237Gao, M., Foh, C. H., & Cai, J. (2012). On the Selection of Transmission Range in Underwater Acoustic Sensor Networks. Sensors, 12(4), 4715-4729. doi:10.3390/s120404715Gómez, J. V., Sandnes, F. E., & Fernández, B. (2012). Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors. Sensors, 12(2), 1930-1949. doi:10.3390/s120201930Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization Algorithms of Underwater Wireless Sensor Networks: A Survey. Sensors, 12(2), 2026-2061. doi:10.3390/s120202026Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A Reverse Localization Scheme for Underwater Acoustic Sensor Networks. Sensors, 12(4), 4352-4380. doi:10.3390/s120404352Lee, S., & Kim, K. (2012). Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks. Sensors, 12(5), 5486-5501. doi:10.3390/s120505486Mohamed, N., Jawhar, I., Al-Jaroodi, J., & Zhang, L. (2011). Sensor Network Architectures for Monitoring Underwater Pipelines. Sensors, 11(11), 10738-10764. doi:10.3390/s111110738Macias, E., Suarez, A., Chiti, F., Sacco, A., & Fantacci, R. (2011). A Hierarchical Communication Architecture for Oceanic Surveillance Applications. Sensors, 11(12), 11343-11356. doi:10.3390/s111211343Zhang, S., Yu, J., Zhang, A., Yang, L., & Shu, Y. (2012). Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation. Sensors, 12(1), 373-390. doi:10.3390/s120100373Climent, S., Capella, J. V., Meratnia, N., & Serrano, J. J. (2012). Underwater Sensor Networks: A New Energy Efficient and Robust Architecture. Sensors, 12(1), 704-731. doi:10.3390/s120100704Min, H., Cho, Y., & Heo, J. (2012). Enhancing the Reliability of Head Nodes in Underwater Sensor Networks. Sensors, 12(2), 1194-1210. doi:10.3390/s120201194Yoon, S., Azad, A. K., Oh, H., & Kim, S. (2012). AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks. Sensors, 12(2), 1827-1845. doi:10.3390/s120201827Caiti, A., Calabrò, V., Dini, G., Lo Duca, A., & Munafò, A. (2012). Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network. Sensors, 12(2), 1967-1989. doi:10.3390/s120201967Wu, H., Chen, M., & Guan, X. (2012). A Network Coding Based Routing Protocol for Underwater Sensor Networks. Sensors, 12(4), 4559-4577. doi:10.3390/s120404559Navarro, G., Huertas, I. E., Costas, E., Flecha, S., Díez-Minguito, M., Caballero, I., … Ruiz, J. (2012). Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain). Sensors, 12(2), 1398-1421. doi:10.3390/s120201398Baladrón, C., Aguiar, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., & Hernández, L. (2012). Performance Study of the Application of Artificial Neural Networks to the Completion and Prediction of Data Retrieved by Underwater Sensors. Sensors, 12(2), 1468-1481. doi:10.3390/s12020146

    Acoustic underwater target tracking methods using autonomous vehicles

    Get PDF
    Marine ecological research related to the increasing importance which the fisheries sector has reached so far, new methods and tools to study the biological components of our oceans are needed. The capacity to measure different population and environmental parameters of marine species allows a greater knowledge of the human impact, improving exploitation strategies of these resources. For example, the displacement capacity and mobility patterns are crucial to obtain the required knowledge for a sustainable management of fisheries. However, underwater localisation is one of the main problems which must be addressed in subsea exploration, where no Global Positioning System (GPS) is available. In addition to the traditional underwater localisation systems, such as Long BaseLine (LBL) or Ultra-Short BaseLine (USBL), new methods have been developed to increase navigation performance, flexibility, and to reduce deployment costs. For example, the Range-Only and Single-Beacon (ROSB) is based on an autonomous vehicle which localises and tracks different underwater targets using slant range measurements conducted by acoustic modems. In a moving target tracking scenario, the ROSB target tracking method can be seen as a Hidden Markov Model (HMM) problem. Using Bayes' rule, the probability distribution function of the HMM states can be solved by using different filtering methods. Accordingly, this thesis presents different strategies to improve the ROSB localisation and tracking methods for static and moving targets. Determining the optimal parameters to minimize acoustic energy use and search time, and to maximize the localisation accuracy and precision, is therefore one of the discussed aspects of ROSB. Thus, we present and compare different methods under different scenarios, both evaluated in simulations and field tests. The main mathematical notation and performance of each algorithm are presented, where the best practice has been derived. From a methodology point of view, this work advances the understanding of accuracy that can be achieved by using ROSB target tracking methods with autonomous vehicles. Moreover, whereas most of the work conducted during the last years has been focused on target tracking using acoustic modems, here we also present a novel method called the Area-Only Target Tracking (AOTT). This method works with commercially available acoustic tags, thereby reducing the costs and complexity over other tracking systems. These tags do not have bidirectional communication capabilities, and therefore, the ROSB techniques are not applicable. However, this method can be used to track small targets such as jellyfish due to the reduced tag's size. The methodology behind the area-only technique is shown, and results from the first field tests conducted in Monterey Bay area, California, are also presented.La biologia marina junt amb la importància que ha adquirit el sector pesquer, fa que es requereixin noves eines per a l’estudi dels nostres oceans. La capacitat de mesurar diferents poblacions i paràmetres ambientals d’espècies marines permet millorar el coneixement de l’impacte que l’ésser humà té sobre elles, millorant-ne els mètodes d’explotació. Per exemple, la capacitat de desplaçament i els patrons de moviment són crucials per obtenir el coneixement necessari per a una explotació sostenible de les pescaries involucrades. No obstant, la localització submarina és un dels principals problemes que s’ha de resoldre en l’explotació dels recursos submarins, on el sistema de posició global (GPS) no es pot utilitzar. A part dels mètodes tradicionals de posicionament submarí, com per exemple el Long Base-Line (LBL) o el Ultra-Short Base-Line (USBL), nous mètodes han estat desenvolupats per tal de millorar la navegació, la flexibilitat, i per reduir els costos de desplegament. Per exemple, el Range-Only and Single-Beacon (ROSB) utilitza un vehicle autònom per a localitzar i seguir diferents objectius submarins mitjançant mesures de rang realitzades a partir de mòdems acústics. En un escenari on l’objectiu a seguir és mòbil, el mètode ROSB de seguiment pot ser vist com a un problema de Hidden Markov Model (HMM). Aleshores, utilitzant la regla de Bayes, la funció de distribució de probabilitat dels estats del HMM pot ser solucionat utilitzant diferents mètodes de filtratge. Per tant, s’estudien diferents estratègies per millorar el sistema de localització i seguiment basat en ROSB, tant per objectius estàtics com mòbils. En aquesta tesis, presentem i comparem diferents mètodes utilitzant diferents escenaris, els quals s’han avaluat tant en simulacions com en proves de camp reals. A més, es presenten les principals notacions matemàtiques de cada algoritme i les millors pràctiques a utilitzar. Per tant, des d’un punt de vista metodològic, aquest treball fa un pas endavant en el coneixement de l’exactitud que es pot assolir utilitzant els mètodes de localització i seguiment d’espècies mitjançant algoritmes ROSB i vehicles autònoms. A més a més, mentre molts dels treballs realitzant durant els últims anys es centren en l’ús de mòdems acústics per al seguiment d’objectius submarins, en aquesta tesis es presenta un innovador mètode anomenat Area-Only Target Tracking (AOTT). Aquest sistema utilitza petites etiquetes acústiques comercials (tag), la qual cosa, redueix el cost i la complexitat en comparació amb els altres mètodes. Addicionalment, gràcies a l’ús d’aquests tags de dimensions reduïdes, aquest sistema permet seguir espècies marines com les meduses. La metodologia utilitzada per el mètode AOTT es mostra en aquesta tesis, on també es presenten els primers experiments realitzats a la badia de Monterey a Califòrnia

    Mapa de la recerca del Campus de Vilanova i la Geltrú

    Get PDF
    Postprint (author’s final draft

    Theoretical and experimental investigation of the insertion loss of a dissipative muffler

    Get PDF
    corecore