5 research outputs found

    Target localization and tracking by fusing doppler differentials from cellular emanations with a multi-spectral video tracker

    Get PDF
    We present an algorithm for fusing data from a constellation of RF sensors detecting cellular emanations with the output of a multi-spectral video tracker to localize and track a target with a specific cell phone. The RF sensors measure the Doppler shift caused by the moving cellular emanation and then Doppler differentials between all sensor pairs are calculated. The multi-spectral video tracker uses a Gaussian mixture model to detect foreground targets and SIFT features to track targets through the video sequence. The data is fused by associating the Doppler differential from the RF sensors with the theoretical Doppler differential computed from the multi-spectral tracker output. The absolute difference and the root-mean-square difference are computed to associate the Doppler differentials from the two sensor systems. Performance of the algorithm was evaluated using synthetically generated datasets of an urban scene with multiple moving vehicles. The presented fusion algorithm correctly associates the cellular emanation with the corresponding video target for low measurement uncertainty and in the presence of favorable motion patterns. For nearly all objects the fusion algorithm has high confidence in associating the emanation with the correct multi-spectral target from the most probable background target

    Target detection, tracking, and localization using multi-spectral image fusion and RF Doppler differentials

    Get PDF
    It is critical for defense and security applications to have a high probability of detection and low false alarm rate while operating over a wide variety of conditions. Sensor fusion, which is the the process of combining data from two or more sensors, has been utilized to improve the performance of a system by exploiting the strengths of each sensor. This dissertation presents algorithms to fuse multi-sensor data that improves system performance by increasing detection rates, lowering false alarms, and improving track performance. Furthermore, this dissertation presents a framework for comparing algorithm error for image registration which is a critical pre-processing step for multi-spectral image fusion. First, I present an algorithm to improve detection and tracking performance for moving targets in a cluttered urban environment by fusing foreground maps from multi-spectral imagery. Most research in image fusion consider visible and long-wave infrared bands; I examine these bands along with near infrared and mid-wave infrared. To localize and track a particular target of interest, I present an algorithm to fuse output from the multi-spectral image tracker with a constellation of RF sensors measuring a specific cellular emanation. The fusion algorithm matches the Doppler differential from the RF sensors with the theoretical Doppler Differential of the video tracker output by selecting the sensor pair that minimizes the absolute difference or root-mean-square difference. Finally, a framework to quantify shift-estimation error for both area- and feature-based algorithms is presented. By exploiting synthetically generated visible and long-wave infrared imagery, error metrics are computed and compared for a number of area- and feature-based shift estimation algorithms. A number of key results are presented in this dissertation. The multi-spectral image tracker improves the location accuracy of the algorithm while improving the detection rate and lowering false alarms for most spectral bands. All 12 moving targets were tracked through the video sequence with only one lost track that was later recovered. Targets from the multi-spectral tracking algorithm were correctly associated with their corresponding cellular emanation for all targets at lower measurement uncertainty using the root-mean-square difference while also having a high confidence ratio for selecting the true target from background targets. For the area-based algorithms and the synthetic air-field image pair, the DFT and ECC algorithms produces sub-pixel shift-estimation error in regions such as shadows and high contrast painted line regions. The edge orientation feature descriptors increase the number of sub-field estimates while improving the shift-estimation error compared to the Lowe descriptor

    An accurate RSS/AoA-based localization method for internet of underwater things

    Get PDF
    Localization is an important issue for Internet of Underwater Things (IoUT) since the performance of a large number of underwater applications highly relies on the position information of underwater sensors. In this paper, we propose a hybrid localization approach based on angle-of-arrival (AoA) and received signal strength (RSS) for IoUT. We consider a smart fishing scenario in which using the proposed approach fishers can find fishes’ locations effectively. The proposed method collects the RSS observation and estimates the AoA based on error variance. To have a more realistic deployment, we assume that the perfect noise information is not available. Thus, a minimax approach is provided in order to optimize the worst-case performance and enhance the estimation accuracy under the unknown parameters. Furthermore, we analyze the mismatch of the proposed estimator using mean-square error (MSE). We then develop semidefinite programming (SDP) based method which relaxes the non-convex constraints into the convex constraints to solve the localization problem in an efficient way. Finally, the Cramer–Rao lower bounds (CRLBs) are derived to bound the performance of the RSS-based estimator. In comparison with other localization schemes, the proposed method increases localization accuracy by more than 13%. Our method can localize 96% of sensor nodes with less than 5% positioning error when there exist 25% anchors

    Target Localization and Tracking by Fusing Doppler Differentials from Cellular Emanations with a Multi-Spectral Video Tracker

    Get PDF
    We present an algorithm for fusing data from a constellation of RF sensors detecting cellular emanations with the output of a multi-spectral video tracker to localize and track a target with a specific cell phone. The RF sensors measure the Doppler shift caused by the moving cellular emanation and then Doppler differentials between all sensor pairs are calculated. The multi-spectral video tracker uses a Gaussian mixture model to detect foreground targets and SIFT features to track targets through the video sequence. The data is fused by associating the Doppler differential from the RF sensors with the theoretical Doppler differential computed from the multi-spectral tracker output. The absolute difference and the root-mean-square difference are computed to associate the Doppler differentials from the two sensor systems. Performance of the algorithm was evaluated using synthetically generated datasets of an urban scene with multiple moving vehicles. The presented fusion algorithm correctly associates the cellular emanation with the corresponding video target for low measurement uncertainty and in the presence of favorable motion patterns. For nearly all objects the fusion algorithm has high confidence in associating the emanation with the correct multi-spectral target from the most probable background target

    Target Localization and Tracking by Fusing Doppler Differentials from Cellular Emanations with a Multi-Spectral Video Tracker

    No full text
    We present an algorithm for fusing data from a constellation of RF sensors detecting cellular emanations with the output of a multi-spectral video tracker to localize and track a target with a specific cell phone. The RF sensors measure the Doppler shift caused by the moving cellular emanation and then Doppler differentials between all sensor pairs are calculated. The multi-spectral video tracker uses a Gaussian mixture model to detect foreground targets and SIFT features to track targets through the video sequence. The data is fused by associating the Doppler differential from the RF sensors with the theoretical Doppler differential computed from the multi-spectral tracker output. The absolute difference and the root-mean-square difference are computed to associate the Doppler differentials from the two sensor systems. Performance of the algorithm was evaluated using synthetically generated datasets of an urban scene with multiple moving vehicles. The presented fusion algorithm correctly associates the cellular emanation with the corresponding video target for low measurement uncertainty and in the presence of favorable motion patterns. For nearly all objects the fusion algorithm has high confidence in associating the emanation with the correct multi-spectral target from the most probable background target
    corecore