37 research outputs found

    The Polarimetric Detection Optimization Filter and Its Statistical Test for Ship Detection

    Get PDF
    Ship detection via synthetic aperture radar (SAR) has been demonstrated to be very useful as polarimetric information helps discriminate between targets and sea clutter. Among the available polarimetric detectors, optimal polarimetric detection (OPD) theoretically provides the best detection performance under the assumption that the fully developed speckle hypothesis stands. This study proposes a polarimetric detection optimization filter (PDOF). The target clutter ratio (TCR) over the speckle variation was maximized using a matrix transform to derive the PDOF. The objective function based on a matrix transform instead of a vector transform is optimized to obtain synthetic effects by combining a polarimetric whitening filter (PWF) and a polarimetric matched filter (PMF). Subspace form of the PDOF (SPDOF) is also proposed, which gives performance comparable to the PDOF. Assuming a Wishart distribution, the exact and approximate expressions of the closed-form probability density function (PDF) of the PDOF are derived. The probability of false alarm (PFA) was derived in a closed-form expression, which allows obtaining the PDOF threshold analytically. Moreover, the gamma model is extended to a generalized gamma distribution (GΓD) to adapt complicated resolutions and sea states. Experiments with simulated and real data validate the correctness and effectiveness of the results. The PDOF detector achieves the best performance in most virtual and real-world environments, especially in cases where the target statistics and clutter are not Wishart-distributed

    PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix

    Get PDF
    The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms

    Speckle noise reduction in PolSAR images with binary partition tree

    Get PDF
    In some remote sensing applications such as PolSAR (Polarimetric Synthetic Aperture Radar), the use of Binary Partition Trees (BPTs) for Speckle Noise filtering schemes is currently gaining interest. In this thesis, a new approach using this representation is investigated: branch filtering. This approach consists in searching for each leaf its ancestors and selecting the one that best represents it, that is, the one that yields the lower error. A potentiality assessment is done to evaluate the margin of improvement that new techniques based on this approach may provide and describe the basic specifications of the algorithms based on it. After that, different new techniques are developed, analysed and compared against the State-of-the-Art. We point out the main strengths and weaknesses of each technique. Our main goal is to understand the behaviour of the filtered data along the BPT branch and interpret how this information can be used in the future for speckle noise reduction in PolSAR images. Finally some conclusions are drawn and some possible future lines of work are exposed and commented.En algunas aplicaciones de teledetección como Polarimetric SAR, el uso de Árboles de Decisión Binarios está ganando interés. En esta tésis se incorpora un nuevo método que usa esta representación: filtraje por ramas. Este método consiste en buscar para cada hoja sus antepasados y seleccionar el mejor nodo como el que de el menor error. Se lleva a cabo un análisis de potencialidad para evaluar el margen de mejora que nuevas técnicas basadas en este método podrían proporcionar y se describen los principios basicos de los algoritmos que se basan en él. Tras esto, se desenvolupan distintas técnicas y se comparan con las del estado del arte. De cada técnica, destacamos sus principales fortalezas y debilidades. Nuestro objetivo principal es entender el comportamiento de los datos filtrados a lo largo de la rama del BPT e interpretar como podemos usar esta información en un futuro para la reducción de ruido especular (speckle) en imágenes PolSAR. Por último, se exponen algunas conclusiones y se presentan y comentan algunas posibles líneas de trabajo futuras.En algunes aplicacions de teledetecció com Polarimetric SAR, l'ús d'Arbres de Particio Binària està guanyant interès. En aquesta tesi, s'investiga un nou mètode que utilitza aquesta representació: filtratge per branques. Aquest mètode consisteix en buscar per cada fulla els seus avantpassats i seleccionar el millor node, és a dir, el que doni un error menor. Es duu a terme un analisi de potencialitat per evaluar el marge de millora que noves tècniques basades en aquest mètode podrien aportar i es descriuen els principis bàsics dels algorismes que s'hi basen. Després, es desenvolupen diverses tècniques i es comparen amb les de l'estat de l'art. Destaquem les principals fortalesses i feblesses de cada tècnica. El nostre principal objectiu és entendre el comportament de les dades filtrades al llarg de la branca del BPT i interpretar com podem utilitzar aquesta informació en un futur per la reducció del soroll especular (speckle) en imatges PolSAR. Per últim s'exposen algunes conclusions i es proposen i comenten possibles noves línies de treball

    Superpixel segmentation based on anisotropic edge strength

    Get PDF
    Superpixel segmentation can benefit from the use of an appropriate method to measure edge strength. In this paper, we present such a method based on the first derivative of anisotropic Gaussian kernels. The kernels can capture the position, direction, prominence, and scale of the edge to be detected. We incorporate the anisotropic edge strength into the distance measure between neighboring superpixels, thereby improving the performance of an existing graph-based superpixel segmentation method. Experimental results validate the superiority of our method in generating superpixels over the competing methods. It is also illustrated that the proposed superpixel segmentation method can facilitate subsequent saliency detection

    A goal-driven unsupervised image segmentation method combining graph-based processing and Markov random fields

    Get PDF
    Image segmentation is the process of partitioning a digital image into a set of homogeneous regions (according to some homogeneity criterion) to facilitate a subsequent higher-level analysis. In this context, the present paper proposes an unsupervised and graph-based method of image segmentation, which is driven by an application goal, namely, the generation of image segments associated with a user-defined and application-specific goal. A graph, together with a random grid of source elements, is defined on top of the input image. From each source satisfying a goal-driven predicate, called seed, a propagation algorithm assigns a cost to each pixel on the basis of similarity and topological connectivity, measuring the degree of association with the reference seed. Then, the set of most significant regions is automatically extracted and used to estimate a statistical model for each region. Finally, the segmentation problem is expressed in a Bayesian framework in terms of probabilistic Markov random field (MRF) graphical modeling. An ad hoc energy function is defined based on parametric models, a seed-specific spatial feature, a background-specific potential, and local-contextual information. This energy function is minimized through graph cuts and, more specifically, the alpha-beta swap algorithm, yielding the final goal-driven segmentation based on the maximum a posteriori (MAP) decision rule. The proposed method does not require deep a priori knowledge (e.g., labelled datasets), as it only requires the choice of a goal-driven predicate and a suited parametric model for the data. In the experimental validation with both magnetic resonance (MR) and synthetic aperture radar (SAR) images, the method demonstrates robustness, versatility, and applicability to different domains, thus allowing for further analyses guided by the generated product

    Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Get PDF
    Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems

    Unsupervised Single-Scene Semantic Segmentation for Earth Observation

    Get PDF
    Earth observation data have huge potential to enrich our knowledge about our planet. An important step in many Earth observation tasks is semantic segmentation. Generally, a large number of pixelwise labeled images are required to train deep models for supervised semantic segmentation. On the contrary, strong intersensor and geographic variations impede the availability of annotated training data in Earth observation. In practice, most Earth observation tasks use only the target scene without assuming availability of any additional scene, labeled or unlabeled. Keeping in mind such constraints, we propose a semantic segmentation method that learns to segment from a single scene, without using any annotation. Earth observation scenes are generally larger than those encountered in typical computer vision datasets. Exploiting this, the proposed method samples smaller unlabeled patches from the scene. For each patch, an alternate view is generated by simple transformations, e.g., addition of noise. Both views are then processed through a two-stream network and weights are iteratively refined using deep clustering, spatial consistency, and contrastive learning in the pixel space. The proposed model automatically segregates the major classes present in the scene and produces the segmentation map. Extensive experiments on four Earth observation datasets collected by different sensors show the effectiveness of the proposed method. Implementation is available at https://gitlab.lrz.de/ai4eo/cd/-/tree/main/unsupContrastiveSemanticSeg

    Techniques for the extraction of spatial and spectral information in the supervised classification of hyperspectral imagery for land-cover applications

    Get PDF
    The objective of this PhD thesis is the development of spatialspectral information extraction techniques for supervised classification tasks, both by means of classical models and those based on deep learning, to be used in the classification of land use or land cover (LULC) multi- and hyper-spectral images obtained by remote sensing. The main goal is the efficient application of these techniques, so that they are able to obtain satisfactory classification results with a low use of computational resources and low execution time
    corecore