80 research outputs found

    Asynchronous bi-directional relay-assisted communication networks

    Get PDF
    We consider an asynchronous bi-directional relay network, consisting of two singleantenna transceivers and multiple single-antenna relays, where the transceiver-relay paths are subject to different relaying and/or propagation delays. Such a network can be viewed as a multipath channel which can cause inter-symbol-interference (ISI) in the signals received by the two transceivers. Hence, we model such a communication scheme as a frequency selective multipath channel which produces ISI at the two transceivers, when the data rates are relatively high. We study both multi- and single-carrier communication schemes in such networks. In a multi-carrier communication scheme, to tackle ISI, the transceivers employ an orthogonal frequency division multiplexing (OFDM) scheme to diagonalize the end-to-end channel. The relays use simple amplify-and-forward relaying, thereby materializing a distributed beamformer. For such a scheme, we propose two different algorithms, based on the max-min fair design approach, to calculate the subcarrier power loading at the transceivers as well as the relay beamforming weights. In a single-carrier communication, assuming a block transmission/reception scheme, block channel equalization is used at the both transceivers to combat the inter-blockinterference (IBI). Assuming a limited total transmit power budget, we minimize the total mean squared error (MSE) of the estimated received signals at the both transceivers by optimally obtaining the transceivers??? powers and the relay beamforming weight vector as well as the block channel equalizers at the two transceivers

    OFDM versus Single-Carrier Transmission for 100 Gbps Optical Communication

    Full text link

    Adaptive Bit Allocation With Reduced Feedback for Wireless Multicarrier Transceivers

    Get PDF
    With the increasing demand in the wireless mobile applications came a growing need to transmit information quickly and accurately, while consuming more and more bandwidth. To address this need, communication engineers started employing multicarrier modulation in their designs, which is suitable for high data rate transmission. Multicarrier modulation reduces the system's susceptibility to the frequency-selective fading channel, by transforming it into a collection of approximately flat subchannels. As a result, this makes it easier to compensate for the distortion introduced by the channel. This thesis concentrates on techniques for saving bandwidth usage when employing adaptive multicarrier modulation, where subcarrier parameters (bit and energy allocations) are modulated based on the channel state information feedback obtained from previous burst. Although bit and energy allocations can substantially increase error robustness and throughput of the system, the feedback information required at both ends of the transceiver can be large. The objective of this work is to compare different feedback compression techniques that could reduce the amount of feedback information required to perform adaptive bit and energy allocation in multicarrier transceivers. This thesis employs an approach for reducing the number of feedback transmissions by exploiting the time-correlation properties of a wireless channel and placing a threshold check on bit error rate (BER) values. Using quantization and source coding techniques, such as Huffman coding, Run length encoding and LZWalgorithms, the amount of feedback information has been compressed. These calculations have been done for different quantization levels to understand the relationship between quantization levels and system performance. These techniques have been applied to both OFDM and MIMO-OFDM systems

    Asynchronous bi-directional relay-assisted communication networks

    Get PDF
    We consider an asynchronous bi-directional relay network, consisting of two singleantenna transceivers and multiple single-antenna relays, where the transceiver-relay paths are subject to different relaying and/or propagation delays. Such a network can be viewed as a multipath channel which can cause inter-symbol-interference (ISI) in the signals received by the two transceivers. Hence, we model such a communication scheme as a frequency selective multipath channel which produces ISI at the two transceivers, when the data rates are relatively high. We study both multi- and single-carrier communication schemes in such networks. In a multi-carrier communication scheme, to tackle ISI, the transceivers employ an orthogonal frequency division multiplexing (OFDM) scheme to diagonalize the end-to-end channel. The relays use simple amplify-and-forward relaying, thereby materializing a distributed beamformer. For such a scheme, we propose two different algorithms, based on the max-min fair design approach, to calculate the subcarrier power loading at the transceivers as well as the relay beamforming weights. In a single-carrier communication, assuming a block transmission/reception scheme, block channel equalization is used at the both transceivers to combat the inter-blockinterference (IBI). Assuming a limited total transmit power budget, we minimize the total mean squared error (MSE) of the estimated received signals at the both transceivers by optimally obtaining the transceivers??? powers and the relay beamforming weight vector as well as the block channel equalizers at the two transceivers

    MIMO designs for filter bank multicarrier and multiantenna systems based on OQAM

    Get PDF
    From the perspective of increasingly data rate requirements in mobile communications, it is deemed necessary to do further research so that the future goals can be reached. To that end, the radio-based communications are resorting to multicarrier modulations and spatial diversity. Until today, the orthogonal frequency division multiplexing (OFDM) modulation is regarded as the dominant technology. On one hand, the OFDM modulation is able to accommodate multiantenna configurations in a very straightforward manner. On the other hand, the poor stopband attenuation exhibited by the OFDM modulation, highlights that a definitely tight synchronization is required. In addition, the cyclic prefix (CP) has to be sufficiently long to avoid inter-block interference, which may substantially reduce the spectral efficiency. In order to overcome the OFDM drawbacks, the filter bank multicarrier modulation based on OQAM (FBMC/OQAM) is introduced. This modulation does not need any CP and benefits from pulse shaping techniques. This aspect becomes crucial in cognitive radio networks and communication systems where nodes are unlikely to be synchronized. In principle, the poor frequency confinement exhibited by OFDM should tip the balance towards FBMC/OQAM. However, the perfect reconstruction property of FBMC/OQAM systems does not hold in presence of multipath fading. This means that the FBMC/OQAM modulation is affected by inter-symbol and inter-carrier interference, unless the channel is equalized to some extent. This observation highlights that the FBMC/OQAM extension to MIMO architectures becomes a big challenge due to the need to cope with both modulation- and multiantenna-induced interference. The goal of this thesis is to study how the FBMC/OQAM modulation scheme can benefit from the degrees of freedom provided by the spatial dimension. In this regard, the first attempt to put the research on track is based on designing signal processing techniques at reception. In this case the emphasis is on single-input-multiple-output (SIMO) architectures. Next, the possibility of pre-equalizing the channel at transmission is investigated. It is considered that multiple antennas are placed at the transmit side giving rise to a multiple-input-single-output (MISO) configuration. In this scenario, the research is not only focused on counteracting the channel but also on distributing the power among subcarriers. Finally, the joint transmitter and receiver design in multiple-input-multiple-output (MIMO) communication systems is covered. From the theory developed in this thesis, it is possible to conclude that the techniques originally devised in the OFDM context can be easily adapted to FBMC/OQAM systems if the channel frequency response is flat within the subchannels. However, metrics such as the peak to average power ratio or the sensitivity to the carrier frequency offset constraint the number of subcarriers, so that the frequency selectivity may be appreciable at the subcarrier level. Then, the flat fading assumption is not satisfied and the specificities of FBMC/OQAM systems have to be considered. In this situation, the proposed techniques allow FBMC/OQAM to remain competitive with OFDM. In addition, for some multiantenna configurations and propagation conditions FBMC/OQAM turns out to be the best choice. The simulation-based results together with the theoretical analysis conducted in this thesis contribute to make progress towards the application of FBMC/OQAM to MIMO channels. The signal processing techniques that are described in this dissertation allow designers to exploit the potentials of FBMC/OQAM and MIMO to improve the link reliability as well as the spectral efficiency

    Time-domain equalization for underwater acoustic OFDM systems with insufficient cyclic prefix

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer
    corecore