12,462 research outputs found

    Design of Equipment Rack with TRIZ Method to Reduce Searching Time in Change Over Activity (Case Study : PT. Jans2en Indonesia)

    Get PDF
    Janssen is a manufacturing plant that works in furniture assembly. Component shortages often occurs, it will cause the increase of work in process (WIP) in assembly section. In previous studies, we analyze the root causes with FMEA and then it is resulted that router section is the constraint of the system. There are many non value added activities such as searching and transportation caused by a messy condition of work places and the devices that aren’t put in the right place. The impact is that the time allocated for every change over is higher than before. There are many components that are worked by the router section, so improvements are needed to minimize changes in over time. 5S method and the use of a new design of rack by TRIZ method are suggested for fixing the conditions of work environment. It is expected to eliminate non value added activities and changes in over time. Result shows that we can reduce non value activities in change over of regular components up to 41% and the elimination of this time is 41,6%. The non value activities in changeover of new items is 36,6% and this elimination of time is 53,3%. Key word : change over, kaizen, design, TRIZ metho

    ELASTIC: Improving CNNs with Dynamic Scaling Policies

    Full text link
    Scale variation has been a challenge from traditional to modern approaches in computer vision. Most solutions to scale issues have a similar theme: a set of intuitive and manually designed policies that are generic and fixed (e.g. SIFT or feature pyramid). We argue that the scaling policy should be learned from data. In this paper, we introduce ELASTIC, a simple, efficient and yet very effective approach to learn a dynamic scale policy from data. We formulate the scaling policy as a non-linear function inside the network's structure that (a) is learned from data, (b) is instance specific, (c) does not add extra computation, and (d) can be applied on any network architecture. We applied ELASTIC to several state-of-the-art network architectures and showed consistent improvement without extra (sometimes even lower) computation on ImageNet classification, MSCOCO multi-label classification, and PASCAL VOC semantic segmentation. Our results show major improvement for images with scale challenges. Our code is available here: https://github.com/allenai/elasticComment: CVPR 2019 oral, code available https://github.com/allenai/elasti

    Kinetic Blocks: Actuated Constructive Assembly for Interaction and Display

    Get PDF
    Pin-based shape displays not only give physical form to digital information, they have the inherent ability to accurately move and manipulate objects placed on top of them. In this paper we focus on such object manipulation: we present ideas and techniques that use the underlying shape change to give kinetic ability to otherwise inanimate objects. First, we describe the shape display's ability to assemble, disassemble, and reassemble structures from simple passive building blocks through stacking, scaffolding, and catapulting. A technical evaluation demonstrates the reliability of the presented techniques. Second, we introduce special kinematic blocks that are actuated and sensed through the underlying pins. These blocks translate vertical pin movements into other degrees of freedom like rotation or horizontal movement. This interplay of the shape display with objects on its surface allows us to render otherwise inaccessible forms, like overhangs, and enables richer input and output

    A Novel Approach For Collaborative Interaction with Mixed Reality in Value Engineering

    Get PDF
    Design and engineering in real-world projects is often influenced by reduction of the problem definition, trade-offs during decision-making, possible loss of information and monetary issues like budget constraints or value-for-money problems. In many engineering projects various stakeholders take part in the project process on various levels of communication, engineering and decision-making. During project meetings and VE sessions between the different stakeholder’s, information and data is gathered and put down analogue and/or digitally, consequently stored in reports, minutes and other modes of representation. Results and conclusions derived from these interactions are often influenced by the user’s field of experience and expertise. Personal stakes, idiosyncrasy, expectations, preferences and interpretations of the various project parts could have implications, interfere or procrastinate non-functionality and possible rupture in the collaborative setting and process leading to diminished prospective project targets, requirements and solutions. We present a hybrid tool as a Virtual Assistant (VA) during a collaborative Value Engineering (VE) session in a real-world design and engineering case. The tool supports interaction and decision-making in conjunction with a physical workbench as focal point (-s), user-interfaces that intuit the user during processing. The hybrid environment allows the users to interact un-tethered with real-world materials, images, drawings, objects and drawing instruments. In course of the processing captures are made of the various topics or issues at stake and logged as iterative instances in a database. Real-time visualization on a monitor of the captured instances are shown and progressively listed in the on-screen user interface. During or after the session the stakeholders can go through the iterative time-listing and synthesize the instances according to i.e. topic, dominance, choice or to the degree of priority. After structuring and sorting the data sets the information can be exported to a data or video file. All stakeholders receive or have access to the data files and can track-back the complete process progression. The system and information generated affords reflection, knowledge sharing and cooperation. Redistribution of data sets to other stakeholders, management or third parties becomes more efficient and congruous. Our approach we took during this experiment was to [re]search the communication, interaction and decision-making progressions of the various stakeholders during the VE-session. We observed the behavioral aspects during the various stages of user interaction, following the decision making process and the use of the tool during the course of the session. We captured the complete session on video for analysis and evaluation of the VE process within a hybrid design environment

    Exploring the Design Space of Immersive Urban Analytics

    Full text link
    Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices, such as HTC VIVE, Oculus Rift, and Microsoft HoloLens. These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence. In this paper, we propose an theoretical model to characterize the visualizations in immersive urban analytics. Further more, based on our comprehensive and concise model, we contribute a typology of combination methods of 2D and 3D visualizations that distinguish between linked views, embedded views, and mixed views. We also propose a supporting guideline to assist users in selecting a proper view under certain circumstances by considering visual geometry and spatial distribution of the 2D and 3D visualizations. Finally, based on existing works, possible future research opportunities are explored and discussed.Comment: 23 pages,11 figure

    Jakob Leupold’s Imaginary Automatic Anamorphic Devices of 1713

    Get PDF
    In 1713 the scientific instrument-maker Jakob Leupold published designs for three machines were the first attempt to design machinery with internal moving parts that replaced human agency in creating original images. This paper first analyzes his text and engravings in order to explain how he proposed to do this, given contemporary materials and command of physical forces. Next, it characterizes the devices as a transition from concepts of incision to concepts of mirroring, taken as models of the history of mechanical reproduction. And finally, Leupold’s replacement of the sighting grid with differential gears points to a set of problems appearing in contemporary philosophy represented in Rococo artistic production of this period as well. Taking the proposed devices in context, they help to theorize the complex notions of creative activity in Rococo visual culture. Taken as an episode in the history of communications, they instance the development of conceptions of personhood and of physical forces at stake in the invention of automated media

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore