140,905 research outputs found

    Tangible Interaction in Mixed Reality Systems

    Get PDF
    chapitre 6, ISBN 978-1-84882-732-5In this chapter, we discuss the design of tangible interaction techniques for Mixed Reality environments. We begin by recalling some conceptual models of tangible interaction. Then, we propose an engineering-oriented software/hardware co-design process, based on our experience in developing tangible user interfaces. We present three different tangible user interfaces for real-world applications, and analyse the feedback from the user studies that we conducted. In summary, we conclude that, since tangible user interfaces are part of the real world and provide a seamless interaction with virtual words, they are well-adapted to mix together reality and virtuality. Hence, tangible interaction optimizes a users' virtual tasks, especially in manipulating and controlling 3D digital data in 3D space

    An Integrating Framework for Mixed Systems

    Get PDF
    International audienceTechnological advances in hardware manufacturing led to an extended range of possibilities for designing physical-digital objects involved in a mixed system. Mixed systems can take various forms and include augmented reality, augmented virtuality, and tangible systems. In this very dynamic context, it is difficult to compare existing mixed systems and to systematically explore the design space. Addressing this design problem, this chapter presents a unified point of view on mixed systems by focusing on mixed objects involved in interaction, i.e. hybrid physical-digital objects straddling physical and digital worlds. Our integrating framework is made of two complementary facets of a mixed object: we define intrinsic characteristics of an object as well as extrinsic characteristics of an object by considering its role in the interaction. Such characteristics of an object are useful for comparing existing mixed systems at a fine-grain level. The taxonomic power of these characteristics is discussed in the context of existing mixed systems from the literature. Their generative power is illustrated by considering a system, Roam, which we designed and developed

    An Integrating Framework for Mixed Systems

    No full text
    International audienceTechnological advances in hardware manufacturing led to an extended range of possibilities for designing physical-digital objects involved in a mixed system. Mixed systems can take various forms and include augmented reality, augmented virtuality, and tangible systems. In this very dynamic context, it is difficult to compare existing mixed systems and to systematically explore the design space. Addressing this design problem, this chapter presents a unified point of view on mixed systems by focusing on mixed objects involved in interaction, i.e. hybrid physical-digital objects straddling physical and digital worlds. Our integrating framework is made of two complementary facets of a mixed object: we define intrinsic characteristics of an object as well as extrinsic characteristics of an object by considering its role in the interaction. Such characteristics of an object are useful for comparing existing mixed systems at a fine-grain level. The taxonomic power of these characteristics is discussed in the context of existing mixed systems from the literature. Their generative power is illustrated by considering a system, Roam, which we designed and developed

    Determining principles for the development of mixed reality systems for command and control applications

    Get PDF
    The pace of advancement in emerging display and interface technologies supporting the development of mixed reality systems – those that exploit the existence of real-world objects to enhance the believability of virtual objects – is rapidly increasing. However, the availability of relevant human-system design standards underpinning the exploitation of interfaces is significantly lagging behind. To provide supporting principles to aid in the development and deployment of mixed reality systems, a series of studies was conducted to systematically investigate a range of design parameters relevant to mixed reality, and to determine the impact of those parameters on human-system performance, including cognitive and physical demands. An assessment of specific design standards was undertaken related to the performance of fundamental human-system interaction tasks in a mixed reality system. It was found that mixed reality is most suited to selection tasks, as opposed to more complex interaction tasks such as repositioning and rescaling virtual objects in 3D space. An evaluation was also made of the effects on presence of introducing physical “tangible” interface elements co-located with virtual content. The findings show that tangible interface objects have a significant positive effect on presence, in addition to usability and workload. Finally, an investigation was undertaken to assess the effects of vibration — a common, uncontrollable environmental condition — on human-system performance. Vibration is shown to have a significantly larger impact on accuracy for eye-based input than on head-based input when performing dwell-based interaction. The lowest frequencies have the greatest effect on accuracy, with higher frequencies producing similar effects to instances of zero vibration

    SurfaceCast: Ubiquitous, Cross-Device Surface Sharing

    Get PDF
    Real-time online interaction is the norm today. Tabletops and other dedicated interactive surface devices with direct input and tangible interaction can enhance remote collaboration, and open up new interaction scenarios based on mixed physical/virtual components. However, they are only available to a small subset of users, as they usually require identical bespoke hardware for every participant, are complex to setup, and need custom scenario-specific applications. We present SurfaceCast, a software toolkit designed to merge multiple distributed, heterogeneous end-user devices into a single, shared mixed-reality surface. Supported devices include regular desktop and laptop computers, tablets, and mixed-reality headsets, as well as projector-camera setups and dedicated interactive tabletop systems. This device-agnostic approach provides a fundamental building block for exploration of a far wider range of usage scenarios than previously feasible, including future clients using our provided API. In this paper, we discuss the software architecture of SurfaceCast, present a formative user study and a quantitative performance analysis of our framework, and introduce five example application scenarios which we enhance through the multi-user and multi-device features of the framework. Our results show that the hardware- and content-agnostic architecture of SurfaceCast can run on a wide variety of devices with sufficient performance and fidelity for real-time interaction

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario
    • …
    corecore