298 research outputs found

    Neuron - synapse level problem decomposition method for cooperative neuro - evolution of feedforward networks for time series prediction

    Get PDF
    A major concern in cooperative coevolution for neuro-evolution is the appropriate problem decomposition method that takes into account the architectural properties of the neural network. Decomposition to the synapse and neuron level has been proposed in the past that have their own strengths and limitations depending on the application problem. In this paper, a new problem decomposition method that combines neuron and synapse level is proposed for feedfoward networks and applied to time series prediction. The results show that the proposed approach has improved the results in selected benchmark data sets when compared to related methods. It also has promising performance when compared to other computational intelligence methods from the literature

    Exploring the use of neural network-based band selection on hyperspectral imagery to identify informative wavelengths for improving classifier task performance

    Get PDF
    Hyperspectral imagery is a highly dimensional type of data resulting in high computational costs during analysis. Band selection aims to reduce the original hyperspectral image to a smaller subset that reduces these costs while preserving the maximum amount of spectral information within the data. This thesis explores various types of band selection techniques used in hyperspectral image processing. Modifying Neural network-based techniques and observing the effects on the band selection process due to the change in network architecture or objective are of particular focus in this thesis. Herein, a generalized neural network-based band selection technique is developed and compared to state-of-the-art algorithms that are applied to a unique dataset and the Pavia City Center dataset where the subsequent selected bands are fed into a classifier to gather comparison results

    File Fragment Classification Using Neural Networks with Lossless Representations

    Get PDF
    This study explores the use of neural networks as universal models for classifying file fragments. This approach differs from previous work in its lossless feature representation, with fragments’ bits as direct input, and its use of feedforward, recurrent, and convolutional networks as classifiers, whereas previous work has only tested feedforward networks. Due to the study’s exploratory nature, the models were not directly evaluated in a practical setting; rather, easily reproducible experiments were performed to attempt to answer the initial question of whether this approach is worthwhile to pursue further, especially due to its high computational cost. The experiments tested classification of fragments of homogeneous file types as an idealized case, rather than using a realistic set of types, because the types of interest are highly application-dependent. The recurrent networks achieved 98 percent accuracy in distinguishing 4 file types, suggesting that this approach may be capable of yielding models with sufficient performance for practical applications. The potential applications depend mainly on the model performance gains achievable by future work but include binary mapping, deep packet inspection, and file carving
    • …
    corecore