103 research outputs found

    Tandem Deep Learning Side-Channel Attack Against FPGA Implementation of AES

    Get PDF
    The majority of recently demonstrated deep-learning side-channel attacks use a single neural network classifier to recover the key. The potential benefits of combining multiple classifiers have not been explored yet in the side-channel attack\u27s context. In this paper, we show that, by combining several CNN classifiers which use different attack points, it is possible to considerably reduce (more than 40% on average) the number of traces required to recover the key from an FPGA implementation of AES by power analysis. We also show that not all combinations of classifiers improve the attack efficiency

    Time- and Amplitude-Controlled Power Noise Generator against SPA Attacks for FPGA-Based IoT Devices

    Get PDF
    Power noise generation for masking power traces is a powerful countermeasure against Simple Power Analysis (SPA), and it has also been used against Differential Power Analysis (DPA) or Correlation Power Analysis (CPA) in the case of cryptographic circuits. This technique makes use of power consumption generators as basic modules, which are usually based on ring oscillators when implemented on FPGAs. These modules can be used to generate power noise and to also extract digital signatures through the power side channel for Intellectual Property (IP) protection purposes. In this paper, a new power consumption generator, named Xored High Consuming Module (XHCM), is proposed. XHCM improves, when compared to others proposals in the literature, the amount of current consumption per LUT when implemented on FPGAs. Experimental results show that these modules can achieve current increments in the range from 2.4 mA (with only 16 LUTs on Artix-7 devices with a power consumption density of 0.75 mW/LUT when using a single HCM) to 11.1 mA (with 67 LUTs when using 8 XHCMs, with a power consumption density of 0.83 mW/LUT). Moreover, a version controlled by Pulse-Width Modulation (PWM) has been developed, named PWM-XHCM, which is, as XHCM, suitable for power watermarking. In order to build countermeasures against SPA attacks, a multi-level XHCM (ML-XHCM) is also presented, which is capable of generating different power consumption levels with minimal area overhead (27 six-input LUTS for generating 16 different amplitude levels on Artix-7 devices). Finally, a randomized version, named RML-XHCM, has also been developed using two True Random Number Generators (TRNGs) to generate current consumption peaks with random amplitudes at random times. RML-XHCM requires less than 150 LUTs on Artix-7 devices. Taking into account these characteristics, two main contributions have been carried out in this article: first, XHCM and PWM-XHCM provide an efficient power consumption generator for extracting digital signatures through the power side channel, and on the other hand, ML-XHCM and RML-XHCM are powerful tools for the protection of processing units against SPA attacks in IoT devices implemented on FPGAs.Junta de AndaluciaEuropean Commission B-TIC-588-UGR2

    Profiled Deep Learning Side-Channel Attack on a Protected Arbiter PUF Combined with Bitstream Modification

    Get PDF
    In this paper we show that deep learning can be used to identify the shape of power traces corresponding to the responses of a protected arbiter PUF implemented in FPGAs. To achieve that, we combine power analysis with bitstream modification. We train a CNN classifier on two 28nm XC7 FPGAs implementing 128-stage arbiter PUFs and then classify the responses of PUFs from two other FPGAs. We demonstrate that it is possible to reduce the number of traces required for a successful attack to a single trace by modifying the bitstream to replicate PUF responses

    Federated Learning in Side-Channel Analysis

    Get PDF
    Recently introduced federated learning is an attractive framework for the distributed training of deep learning models with thousands of participants. However, it can potentially be used with malicious intent. For example, adversaries can use their smartphones to jointly train a classifier for extracting secret keys from the smartphones\u27 SIM cards without sharing their side-channel measurements with each other. With federated learning, each participant might be able to create a strong model in the absence of sufficient training data. Furthermore, they preserve their anonymity. In this paper, we investigate this new attack vector in the context of side-channel attacks. We compare the federated learning, which aggregates model updates submitted by N participants, with two other aggregating approaches: (1) training on combined side-channel data from N devices, and (2) using an ensemble of N individually trained models. Our first experiments on 8-bit Atmel ATxmega128D4 microcontroller implementation of AES show that federated learning is capable of outperforming the other approaches

    Multi-Leak Deep-Learning Side-Channel Analysis

    Get PDF
    Deep Learning Side-Channel Attacks (DLSCAs) have become a realistic threat to implementations of cryptographic algorithms, such as Advanced Encryption Standard (AES). By utilizing deep-learning models to analyze side-channel measurements, the attacker is able to derive the secret key of the cryptographic alrgorithm. However, when traces have multiple leakage intervals for a specific attack point, the majority of existing works train neural networks on these traces directly, without a appropriate preprocess step for each leakage interval. This degenerates the quality of profiling traces due to the noise and non-primary components. In this paper, we first divide the multi-leaky traces into leakage intervals and train models on different intervals separately. Afterwards, we concatenate these neural networks to build the final network, which is called multi-input model. We test the proposed multi-input model on traces captured from STM32F3 microcontroller implementations of AES-128 and show a 2-fold improvement over the previous single-input attacks

    Far Field EM Side-Channel Attack on AES Using Deep Learning

    Get PDF
    We present the first deep learning-based side-channel attack on AES-128 using far field electromagnetic emissions as a side channel. Our neural networks are trained on traces captured from five different Bluetooth devices at five different distances to target and tested on four other Bluetooth devices. We can recover the key from less than 10K traces captured in an office environment at 15 m distance to target even if the measurement for each encryption is taken only once. Previous template attacks required multiple repetitions of the same encryption. For the case of 1K repetitions, we need less than 400 traces on average at 15 m distance to target. This improves the template attack presented at CHES\u272020 which requires 5K traces and key enumeration up to 2232^{23}

    Cross Subkey Side Channel Analysis Based on Small Samples

    Get PDF
    The majority of recently demonstrated Deep-Learning Side-Channel Analysis (DLSCA) use neural networks trained on a segment of traces containing operations only related to the target subkey. However, when the size of the training set is limited, as in this paper with only 5K power traces, the deep learning (DL) model cannot effectively learn the internal features of the data due to insufficient training data. In this paper, we propose a cross-subkey training approach that acts as a trace augmentation. We train deep-learning models not only on a segment of traces containing the SBox operation of the target subkey of AES-128 but also on segments for other 15 subkeys. Experimental results show that the accuracy of the subkey combination training model is 28.20% higher than that of the individual subkey training model on traces captured in the microcontroller implementation of the STM32F3 with AES-128. And validation is performed on two additional publicly available datasets. At the same time, the number of traces that need to be captured when the model is trained is greatly reduced, demonstrating the effectiveness and practicality of the method

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks
    corecore