56 research outputs found

    Active data-centric framework for data protection in cloud environment

    Get PDF
    Cloud computing is an emerging evolutionary computing model that provides highly scalable services over highspeed Internet on a pay-as-usage model. However, cloud-based solutions still have not been widely deployed in some sensitive areas, such as banking and healthcare. The lack of widespread development is related to users&rsquo; concern that their confidential data or privacy would leak out in the cloud&rsquo;s outsourced environment. To address this problem, we propose a novel active data-centric framework to ultimately improve the transparency and accountability of actual usage of the users&rsquo; data in cloud. Our data-centric framework emphasizes &ldquo;active&rdquo; feature which packages the raw data with active properties that enforce data usage with active defending and protection capability. To achieve the active scheme, we devise the Triggerable Data File Structure (TDFS). Moreover, we employ the zero-knowledge proof scheme to verify the request&rsquo;s identification without revealing any vital information. Our experimental outcomes demonstrate the efficiency, dependability, and scalability of our framework.<br /

    Holistic security 4.0

    Get PDF
    The future computer climate will represent an ever more aligned world of integrating technologies, affecting consumer, business and industry sectors. The vision was first outlined in the Industry 4.0 conception. The elements which comprise smart systems or embedded devices have been investigated to determine the technological climate. The emerging technologies revolve around core concepts, and specifically in this project, the uses of Internet of Things (IoT), Industrial Internet of Things (IIoT) and Internet of Everything (IoE). The application of bare metal and logical technology qualities are put under the microscope to provide an effective blue print of the technological field. The systems and governance surrounding smart systems are also examined. Such an approach helps to explain the beneficial or negative elements of smart devices. Consequently, this ensures a comprehensive review of standards, laws, policy and guidance to enable security and cybersecurity of the 4.0 systems

    Blockchain-Driven Secure and Transparent Audit Logs

    Get PDF
    In enterprise business applications, large volumes of data are generated daily, encoding business logic and transactions. Those applications are governed by various compliance requirements, making it essential to provide audit logs to store, track, and attribute data changes. In traditional audit log systems, logs are collected and stored in a centralized medium, making them prone to various forms of attacks and manipulations, including physical access and remote vulnerability exploitation attacks, and eventually allowing for unauthorized data modification, threatening the guarantees of audit logs. Moreover, such systems, and given their centralized nature, are characterized by a single point of failure. To harden the security of audit logs in enterprise business applications, in this work we explore the design space of blockchain-driven secure and transparent audit logs. We highlight the possibility of ensuring stronger security and functional properties by a generic blockchain system for audit logs, realize this generic design through BlockAudit, which addresses both security and functional requirements, optimize BlockAudit through multi-layered design in BlockTrail, and explore the design space further by assessing the functional and security properties the consensus algorithms through comprehensive evaluations. The first component of this work is BlockAudit, a design blueprint that enumerates structural, functional, and security requirements for blockchain-based audit logs. BlockAudit uses a consensus-driven approach to replicate audit logs across multiple application peers to prevent the single-point-of-failure. BlockAudit also uses the Practical Byzantine Fault Tolerance (PBFT) protocol to achieve consensus over the state of the audit log data. We evaluate the performance of BlockAudit using event-driven simulations, abstracted from IBM Hyperledger. Through the performance evaluation of BlockAudit, we pinpoint a need for high scalability and high throughput. We achieve those requirements by exploring various design optimizations to the flat structure of BlockAudit inspired by real-world application characteristics. Namely, enterprise business applications often operate across non-overlapping geographical hierarchies including cities, counties, states, and federations. Leveraging that, we applied a similar transformation to BlockAudit to fragment the flat blockchain system into layers of codependent hierarchies, capable of processing transactions in parallel. Our hierarchical design, called BlockTrail, reduced the storage and search complexity for blockchains substantially while increasing the throughput and scalability of the audit log system. We prototyped BlockTrail on a custom-built blockchain simulator and analyzed its performance under varying transactions and network sizes demonstrating its advantages over BlockAudit. A recurring limitation in both BlockAudit and BlockTrail is the use of the PBFT consensus protocol, which has high complexity and low scalability features. Moreover, the performance of our proposed designs was only evaluated in computer simulations, which sidestepped the complexities of the real-world blockchain system. To address those shortcomings, we created a generic cloud-based blockchain testbed capable of executing five well-known consensus algorithms including Proof-of-Work, Proof-of-Stake, Proof-of-Elapsed Time, Clique, and PBFT. For each consensus protocol, we instrumented our auditing system with various benchmarks to measure the latency, throughput, and scalability, highlighting the trade-off between the different protocols

    Lightweight mutual authentication and privacy preservation schemes for IOT systems.

    Get PDF
    Internet of Things (IoT) presents a holistic and transformative approach for providing services in different domains. IoT creates an atmosphere of interaction between humans and the surrounding physical world through various technologies such as sensors, actuators, and the cloud. Theoretically, when everything is connected, everything is at risk. The rapid growth of IoT with the heterogeneous devices that are connected to the Internet generates new challenges in protecting and preserving user’s privacy and ensuring the security of our lives. IoT systems face considerable challenges in deploying robust authentication protocols because some of the IoT devices are resource-constrained with limited computation and storage capabilities to implement the currently available authentication mechanism that employs computationally expensive functions. The limited capabilities of IoT devices raise significant security and privacy concerns, such as ensuring personal information confidentiality and integrity and establishing end-to-end authentication and secret key generation between the communicating device to guarantee secure communication among the communicating devices. The ubiquity nature of the IoT device provides adversaries more attack surfaces which can lead to tragic consequences that can negatively impact our everyday connected lives. According to [1], authentication and privacy protection are essential security requirements. Therefore, there is a critical need to address these rising security and privacy concerns to ensure IoT systems\u27 safety. This dissertation identifies gaps in the literature and presents new mutual authentication and privacy preservation schemes that fit the needs of resource-constrained devices to improve IoT security and privacy against common attacks. This research enhances IoT security and privacy by introducing lightweight mutual authentication and privacy preservation schemes for IoT based on hardware biometrics using PUF, Chained hash PUF, dynamic identities, and user’s static and continuous biometrics. The communicating parties can anonymously communicate and mutually authenticate each other and locally establish a session key using dynamic identities to ensure the user’s unlinkability and untraceability. Furthermore, virtual domain segregation is implemented to apply security policies between nodes. The chained-hash PUF mechanism technique is implemented as a way to verify the sender’s identity. At first, this dissertation presents a framework called “A Lightweight Mutual Authentication and Privacy-Preservation framework for IoT Systems” and this framework is considered the foundation of all presented schemes. The proposed framework integrates software and hardware-based security approaches that satisfy the NIST IoT security requirements for data protection and device identification. Also, this dissertation presents an architecture called “PUF Hierarchal Distributed Architecture” (PHDA), which is used to perform the device name resolution. Based on the proposed framework and PUF architecture, three lightweight privacy-preserving and mutual authentication schemes are presented. The Three different schemes are introduced to accommodate both stationary and mobile IoT devices as well as local and distributed nodes. The first scheme is designed for the smart homes domain, where the IoT devices are stationary, and the controller node is local. In this scheme, there is direct communication between the IoT nodes and the controller node. Establishing mutual authentication does not require the cloud service\u27s involvement to reduce the system latency and offload the cloud traffic. The second scheme is designed for the industrial IoT domain and used smart poultry farms as a use case of the Industrial IoT (IIoT) domain. In the second scheme, the IoT devices are stationary, and the controller nodes are hierarchical and distributed, supported by machine-to-machine (M2M) communication. The third scheme is designed for smart cities and used IoV fleet vehicles as a use case of the smart cities domain. During the roaming service, the mutual authentication process between a vehicle and the distributed controller nodes represented by the Roadside Units (RSUs) is completed through the cloud service that stores all vehicle\u27s security credentials. After that, when a vehicle moves to the proximity of a new RSU under the same administrative authority of the most recently visited RSU, the two RSUs can cooperate to verify the vehicle\u27s legitimacy. Also, the third scheme supports driver static and continuous authentication as a driver monitoring system for the sake of both road and driver safety. The security of the proposed schemes is evaluated and simulated using two different methods: security analysis and performance analysis. The security analysis is implemented through formal security analysis and informal security analysis. The formal analysis uses the Burrows–Abadi–Needham logic (BAN) and model-checking using the automated validation of Internet security protocols and applications (AVISPA) toolkit. The informal security analysis is completed by: (1) investigating the robustness of the proposed schemes against the well-known security attacks and analyze its satisfaction with the main security properties; and (2) comparing the proposed schemes with the other existing authentication schemes considering their resistance to the well-known attacks and their satisfaction with the main security requirements. Both the formal and informal security analyses complement each other. The performance evaluation is conducted by analyzing and comparing the overhead and efficiency of the proposed schemes with other related schemes from the literature. The results showed that the proposed schemes achieve all security goals and, simultaneously, efficiently and satisfy the needs of the resource-constrained IoT devices

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Protecting Commodity Operating Systems through Strong Kernel Isolation

    Get PDF
    Today’s operating systems are large, complex, and plagued with vulnerabilities that allow perpetrators to exploit them for profit. The constant rise in the number of software weaknesses, coupled with the sophistication of modern adversaries, make the need for effective and adaptive defenses more critical than ever. In this dissertation, we develop a set of novel protection mechanisms, and introduce new concepts and techniques to secure commodity operating systems against attacks that exploit vulnerabilities in kernel code. Modern OSes opt for a shared process/kernel model to minimize the overhead of operations that cross protection domains. However, this design choice provides a unique vantage point to local attackers, as it allows them to control—both in terms of permissions and contents—part of the memory that is accessible by the kernel, easily circumventing protections like kernel-space ASLR and WˆX. Attacks that leverage the weak separation between user and kernel space, characterized as return-to-user (ret2usr) attacks, have been the de facto kernel exploitation technique in virtually every major OS, while they are not limited to the x86 platform, but have also targeted ARM and others. Given the multi-OS and cross-architecture nature of ret2usr threats, we propose kGuard: a kernel protection mechanism, realized as a cross-platform compiler extension, which can safeguard any 32- or 64-bit OS kernel from ret2usr attacks. kGuard enforces strong address space segregation by instrumenting exploitable control transfers with dynamic Control- Flow Assertions (CFAs). CFAs, a new confinement (inline monitoring) concept that we introduce, act as guards that prevent the unconstrained transition of privileged execution paths to user space. To thwart attacks against itself, kGuard also incorporates two novel code diversification techniques: code inflation and CFA motion. Both countermeasures randomize the location of the inline guards, creating a moving target for an attacker that tries to pinpoint their exact placement to evade kGuard. Evaluation results indicate that kGuard provides comprehensive ret2usr protection with negligible overhead (∌1%). Furthermore, we expose a set of additional kernel design practices that trade stronger isolation for performance, all of which can be harnessed to deconstruct kernel isolation. To demonstrate the significance of the problem, we introduce a new kernel exploitation technique, dubbed return-to-direct-mapped memory (ret2dir), which relies on inherent properties of the memory management (sub)system of modern OSes to bypass every ret2usr defense to date. To illustrate the effectiveness of ret2dir, we outline a principled methodology for constructing reliable exploits against hardened targets. We further apply it on real-world kernel exploits for x86, x86-64, and ARM Linux, transforming them into ret2dir-equivalents that bypass deployed ret2usr protections, like Intel SMEP and ARM PXN. Finally, we introduce the concept of eXclusive Page Frame Ownership (XPFO): a memory management approach that prevents the implicit sharing of page frames among user processes and the kernel, ensuring that user-controlled content can no longer be injected into kernel space using ret2dir. We built XPFO on Linux and implemented a set of optimizations, related to TLB handling and page frame content sanitization, to minimize its performance penalty. Evaluation results show that our proposed defense offers effective protection against ret2dir attacks with low runtime overhead (<3%)

    Malware tolerance: Distributing trust over multiple devices

    Get PDF
    Current security solutions try to keep the adversary out of the computer infrastructure. However, with zero-day exploits and certain rootkit attacks, the assumption that attacks can be blocked does not hold any more. This work presents the concept of malware tolerance accepting that every device might be compromised at some point in time. The concept aims to distribute trust over several devices so that no single device is able to compromise security features by itself. I create three malware-tolerant techniques to demonstrate the feasibility of the concept. This thesis introduces a trusted input system which delivers keystrokes securely from the keyboard to a recipient even if one of its components is compromised. The second approach is the design of a self-healing Industrial Control System, a sensor-actuator network to securely control a physical system. If an adversary manages to compromise one of the components, it remains secure and can even recover from attacks. Lastly, this thesis proposes a mesh network architecture aimed at smart-home networks without assuming any device in the network invulnerable to attacks applying isolation mechanisms to otherwise flat mesh networks. This thesis gives formal security proofs with protocol verifier ProVerif. The proof scripts are open-source

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A
    • 

    corecore