9,810 research outputs found

    Taming Data Quality in AI-Enabled Industrial Internet of Things

    Get PDF
    We address the problem of taming data quality in artificial intelligence (AI)-enabled Industrial Internet of Things systems by devising machine learning pipelines as part of a decentralized edge-to-cloud architecture. We present the design and deployment of our approach from an AI engineering perspective using two industrial case studies.acceptedVersio

    Project knowledge into project practice: generational issues in the knowledge management process

    Full text link
    This paper considers Learning and Knowledge Transfer within the project domain. Knowledge can be a tenuous and elusive concept, and is challenging to transfer within organizations and projects. This challenge is compounded when we consider generational differences in the project and the workplace. This paper looks at learning, and the transfer of that generated knowledge. A number of tools and frameworks have been considered, together with accumulated extant literature. These issues have been deliberated through the lens of different generational types, focusing on the issues and differences in knowledge engagement and absorption between Baby Boomers, Generation X, and Generation Y/Millennials. Generation Z/Centennials have also been included where appropriate. This is a significant issue in modern project and organizational structures. Some recommendations are offered to assist in effective knowledge transfer across generational types.Accepted manuscrip

    MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs

    Full text link
    We present multi-agent A* (MAA*), the first complete and optimal heuristic search algorithm for solving decentralized partially-observable Markov decision problems (DEC-POMDPs) with finite horizon. The algorithm is suitable for computing optimal plans for a cooperative group of agents that operate in a stochastic environment such as multirobot coordination, network traffic control, `or distributed resource allocation. Solving such problems efiectively is a major challenge in the area of planning under uncertainty. Our solution is based on a synthesis of classical heuristic search and decentralized control theory. Experimental results show that MAA* has significant advantages. We introduce an anytime variant of MAA* and conclude with a discussion of promising extensions such as an approach to solving infinite horizon problems.Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005
    • …
    corecore