321 research outputs found

    Taming the interoperability challenges of complex IoT systems

    No full text
    of communication protocols and data formats; hence ensuring diverse devices can interoperate with one another remains a significant challenge. Model-driven development and testing solutions have been proposed as methods to aid software developers achieve interoperability compliance in the face of this increasing complexity. However, current approaches often involve complicated and domain specific models (e.g. web services described by WSDL). In this paper, we explore a lightweight, middleware independent, model-driven development framework to help developers tame the challenges of composing IoT services that interoperate with one another. The framework is based upon two key contributions: i) patterns of interoperability behaviour, and ii) a software framework to monitor and reason about interoperability success or failure. We show using a case-study from the FI-WARE Future Internet Service domain that this interoperability framework can support non-expert developers address interoperability challenges. We also deployed tools built atop the framework and made them available in the XIFI large-scale FI-PPP test environment

    Internet of Things, cybersecurity and governing wicked problems: learning from climate change governance

    Get PDF
    The implementation of the Internet of Things (IoT) is central to what the World Economic Forum has coined the ‘Fourth Industrial Revolution’; a technological revolution built upon cyber-physical systems that will blur the lines between the physical, digital and biological spheres. Novel interconnections will emerge as a result, challenging traditional relations and modes of governance. However, a central feature of the IoT is that the implications of cyber (in)security are no longer abstract. The IoT also returns us to the world of kinetic effects in international relations; more familiar territory for IR. The resulting cooperation and coordination challenges are transboundary in nature, occur at multiple levels across sectors, between institutions, and will impact all actors, both public and private, in complex, often highly politicised ways. In this article we argue that advances in global climate governance appear to be offering an early model of a consensual rules-based approach within the existing international order that provides space for advancing agility, flexibility, and polycentrism to meet the demands of ‘wicked problems’ like the cybersecurity of the IoT. Perhaps one of the most important lessons to be drawn across from climate governance is the role of robust mechanisms for knowledge exchange – specifically between the technical and policy communities

    Leveraging and Fusing Civil and Military Sensors to support Disaster Relief Operations in Smart Environments

    Get PDF
    Natural disasters occur unpredictably and can range in severity from something locally manageable to large scale events that require external intervention. In particular, when large scale disasters occur, they can cause widespread damage and overwhelm the ability of local governments and authorities to respond. In such situations, Civil-Military Cooperation (CIMIC) is essential for a rapid and robust Humanitarian Assistance and Disaster Relief (HADR) operation. These type of operations bring to bear the Command and Control (C2) and Logistics capabilities of the military to rapidly deploy assets to help with the disaster relief activities. Smart Cities and Smart Environments, embedded with IoT, introduce multiple sensing modalities that typically provide wide coverage over the deployed area. Given that the military does not own or control these assets, they are sometimes referred to as gray assets, which are not as trustworthy as blue assets, owned by the military. However, leveraging these gray assets can significantly improve the ability for the military to quickly obtain Situational Awareness (SA) about the disaster and optimize the planning of rescue operations and allocation of resources to achieve the best possible effects. Fusing the information from the civilian IoT sensors with the custom military sensors could help validate and improve trust in the information from the gray assets. The focus of this paper is to further examine this challenge of achieving Civil-Military cooperation for HADR operations by leveraging and fusing information from gray and blue assets

    Security Evaluation of Cyber-Physical Systems in Society- Critical Internet of Things

    Get PDF
    In this paper, we present evaluation of security awareness of developers and users of cyber-physical systems. Our study includes interviews, workshops, surveys and one practical evaluation. We conducted 15 interviews and conducted survey with 55 respondents coming primarily from industry. Furthermore, we performed practical evaluation of current state of practice for a society-critical application, a commercial vehicle, and reconfirmed our findings discussing an attack vector for an off-line societycritical facility. More work is necessary to increase usage of security strategies, available methods, processes and standards. The security information, currently often insufficient, should be provided in the user manuals of products and services to protect system users. We confirmed it lately when we conducted an additional survey of users, with users feeling as left out in their quest for own security and privacy. Finally, hardware-related security questions begin to come up on the agenda, with a general increase of interest and awareness of hardware contribution to the overall cyber-physical security. At the end of this paper we discuss possible countermeasures for dealing with threats in infrastructures, highlighting the role of authorities in this quest

    Fostering IoT service replicability in interoperable urban ecosystems

    Get PDF
    Worldwide cities are involved in a digital transformation phase specially focused on sustainability and improving citizen's quality of life. However, such objectives are hard to achieve if the migration of the urban processes are not performed following a common approach. Under the paradigm of smart city, different Information and Communication Technologies (ICT) have been deployed over urban environments to enable such digital transformation. However, actual implementations differ from one city to another, and even between services within the same city. As a consequence, the deployment of urban services is hindered, since they need to be tailored to each city. In addition, the isolation of urban services obstructs its optimization, since it cannot harness contextual information coming from other services. All in all, it is necessary to implement tools and mechanisms that allow us to ensure that city solutions and their vertical services are interoperable. In order to tackle this issue, different initiatives have proposed architectures that homogenize the interaction with smart cities from different angles. However, so far the compliance with such architectures has not been assessed. Having this in mind, in this work we present a validation framework, developed under the umbrella of the SynchroniCity project, which aims to verify that interfaces and data exposed by cities are aligned with the adopted standards and data models. In this regard, the validation framework presented here is the technical enabler for the creation of an interoperability certi cate for smart cities. To assess the bene ts of the validation framework, we have used it to check the interoperability of 21 smart city deployments worldwide that adhered the SynchroniCity guidelines. Afterwards, during an open call a total number of 37 services have been deployed over such SynchroniCity instances, thus con rming the goodness of uniform and validated smart cities to foster service replicability.This work was supported in part by the European Union’s Horizon 2020 Programme [SynchroniCity (Delivering an IoT enabled Digital Single Market for Europe and Beyond)] under Grant 732240, and in part by the Spanish Government (Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional, MINECO-FEDER) through the project FIERCE: Future Internet Enabled Resilient smart CitiEs under Grant RTI2018-093475-AI00

    Smart e-Learning Systems with Big Data

    Get PDF
    Nowadays, the Internet connects people, multimedia and physical objects leading to a new-wave of services. This includes learning applications, which require to manage huge and mixed volumes of information coming from Web and social media, smart-cities and Internet of Things nodes. Unfortunately, designing smart e-learning systems able to take advantage of such a complex technological space raises different challenges. In this perspective, this paper introduces a reference architecture for the development of future and big-data-capable e-learning platforms. Also, it showcases how data can be used to enrich the learning process
    • 

    corecore