1,861 research outputs found

    Taming Aspects with Membranes

    Get PDF
    International audienceIn most aspect-oriented languages, aspects have an unrestricted global view of computation. Several approaches for aspect scoping and more strongly encapsulated modules have been formulated to restrict this controversial power of aspects. This paper leverages the concept of programmable membranes of Boudol, Schmitt and Stefani, as a means to tame aspects by customizing the semantics of aspect weaving locally. Membranes have the potential to subsume previous proposals in a uniform framework. Because membranes give structure to computation, they enable flexible scoping of aspects; because they are programmable, they enable visibility and safety constraints, both for the advised program and for the aspects. The power and simplicity of membranes open interesting perspectives to unify multiple approaches that tackle the unrestricted power of aspects

    Taming aspects with monads and membranes

    Get PDF
    International audienceWhen a software system is developed using several aspects, special care must be taken to ensure that the resulting behavior is correct. This is known as the aspect interference problem, and existing approaches essentially aim to detect whether a system exhibits problematic interferences of aspects. In this paper we describe how to control aspect interference by construction by relying on the type system. More precisely, we combine a monadic embedding of the pointcut/advice model in Haskell with the notion of membranes for aspect-oriented programming. Aspects must explicitly declare the side effectsa nd the context they can act upon. Allowed patterns of control flow interference are declared at the membrane level and statically enforced. Finally, computational interference between aspects is controlled by the membrane topology. To combine independent and reusable aspects and monadic components into a program specification we use monad views, a recent technique for conveniently handling the monadic stack

    Diffusional phenomena in membrane separation processes

    Get PDF
    Nowadays membrane filtration processes are used industrially as an alternative to conventional separation methods. Membrane separation methods can be divided into classes according to their separation characteristics: (i) separation by sieving action; (ii) separation due to a difference in affinity and diffusivity; (iii) separation due to a difference in charge of molecules; (iv) carrier-facilitated transport, and (v) the process of (time-) controlled released by diffusion. In all these cases diffusion processes play an important role in the transport mechanism of the solutes. Various mechanisms have been distinguished to describe the transport in membranes: transport through bulk material (dense membranes), Knudsen diffusion in narrow pores, viscous flow in wide pores or surface diffusion along pore walls. In practice, the transport can be a result of more than only one of these mechanisms. For all of these mechanisms models have been derived. The characteristics of a membrane, e.g. its crystallinity or its charge, can also have major consequences for the rate of diffusion in the membrane, and hence for the flux obtained. Apart from the diffusion transport processes in membranes mentioned above, other important diffusion processes are related to membrane processes, viz. diffusion in the boundary layer near the membrane (concentration polarization phenomena) and diffusion during membrane formation. The degree of concentration polarization is related to the magnitude of the mass transfer coefficient which, in turn, is influenced by the diffusion coefficient. The effect of concentration polarization can be rather different for the various membrane processes. The phase inversion membrane formation mechanism is determined to a large extent by the kinetic aspects during membrane formation, which are diffusion of solvent and of non-solvent and the kinetics of the phase separation itself

    Exploring Membranes for Controlling Aspects

    Get PDF
    In most aspect-oriented languages, aspects have an unrestricted global view of computation. Several approaches for aspect scoping and more strongly encapsulated modules have been formulated to restrict this controversial power of aspects. This paper proposes to leverage the concept of programmable membranes developed by Boudol, Schmitt and Stefani, as a means to tame aspects by customizing the semantics of aspect weaving locally. Membranes subsume previous proposals in a uniform framework. Because membranes give structure to computation, they enable flexible scoping of aspects; because they are programmable, they make it possible to define visibility and safety constraints, both for the advised program and for the aspects. We first de- scribe membranes for AOP without committing to any specific language design. In addition, we then illustrate an extension of AspectScheme with membranes, and explore the instantiation of programmable membranes in the Kell calculus. The power and simplicity of membranes open interesting perspectives to unify multiple approaches that tackle the unrestricted power of aspect-oriented programming

    The role of BST2/tetherin in feline retrovirus infection

    Get PDF
    Pathogenic retroviral infections of mammals have induced the evolution of cellular anti-viral restriction factors and have shaped their biological activities. This intrinsic immunity plays an important role in controlling viral replication and imposes a barrier to viral cross-species transmission. Well-studied examples of such host restriction factors are TRIM5α, an E3 ubiquitin ligase that binds incoming retroviral capsids in the cytoplasm via its C-terminal PRY/SPRY (B30.2) domain and targets them for proteasomal degradation, and APOBEC3 proteins, cytidine deaminases that induce hypermutation and impair viral reverse transcription. Tetherin (BST-2, CD317) is an interferon-inducible transmembrane protein that potently inhibits the release of nascent retrovirus particles in single-cycle replication assays. However, whether the primary biological activity of tetherin in vivo is that of a restriction factor remains uncertain as recent studies on human tetherin suggest that it is unable to prevent spreading infection of human immunodeficiency virus type 1 (HIV-1). The feline tetherin homologue resembles human tetherin in amino acid sequence, protein topology and anti-viral activity. Transiently expressed feline tetherin displays potent inhibition of feline immunodeficiency virus (FIV) and HIV-1 particle release. However, stable ectopic expression of feline tetherin in a range of feline cell lines has no inhibitory effect on the growth of either primary or cell culture-adapted strains of FIV. By comparing and contrasting the activities of the felid and primate tetherins against their respective immunodeficiency-causing lentiviruses we may gain insight into the contribution of tetherins to the control of lentiviral replication and the evolution of lentiviral virulence
    corecore