1,144 research outputs found

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    SUVS: Secure Unencrypted Voting Scheme

    Full text link
    [EN] In this paper, we propose a light-weight electronic voting protocol. The approach used by our protocol to conceal the ballots does not imply encryption, and guarantees the privacy of the direction of the vote unless all the contestants (parties) agree to do so. Our method is based on the division of the ballot into different pieces of information, which separately reveal no information at all, and that can be latter aggregated to recover the original vote. We show that, despite its simplicity, this scheme is powerful, it does not sacrifice any of the security properties demanded in a formal electronic voting protocol, and, furthermore, even in post-quantum scenarios, neither the casted votes can be tampered with, nor the identity of any elector can be linked with the direction of her vote.Results related to Spanish Patent Application number P202131209.Larriba, AM.; López Rodríguez, D. (2022). SUVS: Secure Unencrypted Voting Scheme. Informatica. 33(4):749-769. https://doi.org/10.15388/22-INFOR50374976933

    Dynamical Systems; Proceedings of an IIASA Workshop, Sopron, Hungary, September 9-13, 1985

    Get PDF
    The investigation of special topics in systems dynamics -- uncertain dynamic processes, viability theory, nonlinear dynamics in models for biomathematics, inverse problems in control systems theory -- has become a major issue at the System and Decision Sciences Research Program of IIASA. The above topics actually reflect two different perspectives in the investigation of dynamic processes. The first, motivated by control theory, is concerned with the properties of dynamic systems that are stable under variations in the systems' parameters. This allows us to specify classes of dynamic systems for which it is possible to construct and control a whole "tube" of trajectories assigned to a system with uncertain parameters and to resolve some inverse problems of control theory within numerically stable solution schemes. The second perspective is to investigate generic properties of dynamic systems that are due to nonlinearity (as bifurcations theory, chaotic behavior, stability properties, and related problems in the qualitative theory of differential systems). Special stress is given to the applications of nonlinear dynamic systems theory to biomathematics and ecology. The proceedings of a workshop on the "Mathematics of Dynamic Processes", dealing with these topics is presented in this volume
    corecore