676 research outputs found

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Current Advances in Internet of Underground Things

    Get PDF
    The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells

    The State of the Art of Information Integration in Space Applications

    Get PDF
    This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and classified; (2) existing works in space system development are analyzed in terms of their contributions to space economy, divisions, activities, and missions; (3) enabling space information technologies are explored at aspects of sensing, communication, networking, data analysis, and system integration; (4) the importance of first-time right (FTR) for implementation of a space system is emphasized, the limitations of digital twin (DT-I) as technological enablers are discussed, and a concept digital-triad (DT-II) is introduced as an information platform to overcome these limitations with a list of fundamental design principles; (5) the research challenges and opportunities are discussed to promote SII and advance space informatics in future

    NASA SBIR product catalog, 1991

    Get PDF
    This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems

    Abstracting Application Development for Resource Constrained Wireless Sensor Networks

    Get PDF
    Ubiquitous computing is a concept whereby computing is distributed across smart objects surrounding users, creating ambient intelligence. Ubiquitous applications use technologies such as the Internet, sensors, actuators, embedded computers, wireless communication, and new user interfaces. The Internet-of-Things (IoT) is one of the key concepts in the realization of ubiquitous computing, whereby smart objects communicate with each other and the Internet. Further, Wireless Sensor Networks (WSNs) are a sub-group of IoT technologies that consist of geographically distributed devices or nodes, capable of sensing and actuating the environment.WSNs typically contain tens to thousands of nodes that organize and operate autonomously to perform application-dependent sensing and sensor data processing tasks. The projected applications require nodes to be small in physical size and low-cost, and have a long lifetime with limited energy resources, while performing complex computing and communications tasks. As a result, WSNs are complex distributed systems that are constrained by communications, computing and energy resources. WSN functionality is dynamic according to the environment and application requirements. Dynamic multitasking, task distribution, task injection, and software updates are required in field experiments for possibly thousands of nodes functioning in harsh environments.The development of WSN application software requires the abstraction of computing, communication, data access, and heterogeneous sensor data sources to reduce the complexities. Abstractions enable the faster development of new applications with a better reuse of existing software, as applications are composed of high-level tasks that use the services provided by the devices to execute the application logic.The main research question of this thesis is: What abstractions are needed for application development for resource constrained WSNs? This thesis models WSN abstractions with three levels that build on top of each other: 1) node abstraction, 2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides the details in the use of the sensing, communication, and processing hardware. The network abstraction specifies methods of discovering and accessing services, and distributing processing in the network. The infrastructure abstraction unifies different sensing technologies and infrastructure computing platforms.As a contribution, this thesis presents the abstraction model with a review of each abstraction level. Several designs for each of the levels are tested and verified with proofs of concept and analyses of field experiments. The resulting designs consist of an operating system kernel, a software update method, a data unification interface, and all abstraction levels combining abstraction called an embedded cloud.The presented operating system kernel has a scalable overhead and provides a programming approach similar to a desktop computer operating system with threads and processes. An over-the-air update method combines low overhead and robust software updating with application task dissemination. The data unification interface homogenizes the access to the data of heterogeneous sensor networks. A unification model is used for various use cases by mapping everything as measurements. The embedded cloud allows resource constrained WSNs to share services and data, and expand resources with other technologies. The embedded cloud allows the distributed processing of applications according to the available services. The applications are implemented as processes using a hardware independent description language that can be executed on resource constrained WSNs. The lessons of practical field experimenting are analyzed to study the importance of the abstractions. Software complexities encountered in the field experiments highlight the need for suitable abstractions.The results of this thesis are tested using proof of concept implementations on real WSN hardware which is constrained by computing power in the order of a few MIPS, memory sizes of a few kilobytes, and small sized batteries. The results will remain usable in the future, as the vast amount, tight integration, and low-cost of future IoT devices require the combination of complex computation with resource constrained platforms

    Optically Powered Highly Energy-efficient Sensor Networks

    Get PDF
    In optically powered networks, both, communication signals and power for remotely located sensor nodes, are transmitted over an optical fiber. Key features of optically powered networks are node operation without local power supplies or batteries as well as operation with negligible susceptibility to electro-magnetic interference and to lightning. In this book, different kinds of optically powered devices and networks are investigated, and selected applications are demonstrated
    corecore