6,298 research outputs found

    Tailored semantic annotation for semantic search

    Get PDF
    This paper presents a novel method for semantic annotation and search of a target corpus using several knowledge resources (KRs). This method relies on a formal statistical framework in which KR concepts and corpus documents are homogeneously represented using statistical language models. Under this framework, we can perform all the necessary operations for an efficient and effective semantic annotation of the corpus. Firstly, we propose a coarse tailoring of the KRs w.r.t the target corpus with the main goal of reducing the ambiguity of the annotations and their computational overhead. Then, we propose the generation of concept profiles, which allow measuring the semantic overlap of the KRs as well as performing a finer tailoring of them. Finally, we propose how to semantically represent documents and queries in terms of the KRs concepts and the statistical framework to perform semantic search. Experiments have been carried out with a corpus about web resources which includes several Life Sciences catalogs and Wikipedia pages related to web resources in general (e.g., databases, tools, services, etc.). Results demonstrate that the proposed method is more effective and efficient than state-of-the-art methods relying on either context-free annotation or keyword-based search.We thank anonymous reviewers for their very useful comments and suggestions. The work was supported by the CICYT project TIN2011-24147 from the Spanish Ministry of Economy and Competitiveness (MINECO)

    Generating adaptive hypertext content from the semantic web

    Get PDF
    Accessing and extracting knowledge from online documents is crucial for therealisation of the Semantic Web and the provision of advanced knowledge services. The Artequakt project is an ongoing investigation tackling these issues to facilitate the creation of tailored biographies from information harvested from the web. In this paper we will present the methods we currently use to model, consolidate and store knowledge extracted from the web so that it can be re-purposed as adaptive content. We look at how Semantic Web technology could be used within this process and also how such techniques might be used to provide content to be published via the Semantic Web

    Accurator: Nichesourcing for Cultural Heritage

    Full text link
    With more and more cultural heritage data being published online, their usefulness in this open context depends on the quality and diversity of descriptive metadata for collection objects. In many cases, existing metadata is not adequate for a variety of retrieval and research tasks and more specific annotations are necessary. However, eliciting such annotations is a challenge since it often requires domain-specific knowledge. Where crowdsourcing can be successfully used for eliciting simple annotations, identifying people with the required expertise might prove troublesome for tasks requiring more complex or domain-specific knowledge. Nichesourcing addresses this problem, by tapping into the expert knowledge available in niche communities. This paper presents Accurator, a methodology for conducting nichesourcing campaigns for cultural heritage institutions, by addressing communities, organizing events and tailoring a web-based annotation tool to a domain of choice. The contribution of this paper is threefold: 1) a nichesourcing methodology, 2) an annotation tool for experts and 3) validation of the methodology and tool in three case studies. The three domains of the case studies are birds on art, bible prints and fashion images. We compare the quality and quantity of obtained annotations in the three case studies, showing that the nichesourcing methodology in combination with the image annotation tool can be used to collect high quality annotations in a variety of domains and annotation tasks. A user evaluation indicates the tool is suited and usable for domain specific annotation tasks

    An ontology to standardize research output of nutritional epidemiology : from paper-based standards to linked content

    Get PDF
    Background: The use of linked data in the Semantic Web is a promising approach to add value to nutrition research. An ontology, which defines the logical relationships between well-defined taxonomic terms, enables linking and harmonizing research output. To enable the description of domain-specific output in nutritional epidemiology, we propose the Ontology for Nutritional Epidemiology (ONE) according to authoritative guidance for nutritional epidemiology. Methods: Firstly, a scoping review was conducted to identify existing ontology terms for reuse in ONE. Secondly, existing data standards and reporting guidelines for nutritional epidemiology were converted into an ontology. The terms used in the standards were summarized and listed separately in a taxonomic hierarchy. Thirdly, the ontologies of the nutritional epidemiologic standards, reporting guidelines, and the core concepts were gathered in ONE. Three case studies were included to illustrate potential applications: (i) annotation of existing manuscripts and data, (ii) ontology-based inference, and (iii) estimation of reporting completeness in a sample of nine manuscripts. Results: Ontologies for food and nutrition (n = 37), disease and specific population (n = 100), data description (n = 21), research description (n = 35), and supplementary (meta) data description (n = 44) were reviewed and listed. ONE consists of 339 classes: 79 new classes to describe data and 24 new classes to describe the content of manuscripts. Conclusion: ONE is a resource to automate data integration, searching, and browsing, and can be used to assess reporting completeness in nutritional epidemiology

    Integration of multi-scale biosimulation models via light-weight semantics

    Get PDF
    Currently, biosimulation researchers use a variety of computational environments and languages to model biological processes. Ideally, researchers should be able to semi- automatically merge models to more effectively build larger, multi-scale models. How- ever, current modeling methods do not capture the underlying semantics of these models sufficiently to support this type of model construction. In this paper, we both propose a general approach to solve this problem, and we provide a specific example that demon- strates the benefits of our methodology. In particular, we describe three biosimulation models: (1) a cardio-vascular fluid dynamics model, (2) a model of heart rate regulation via baroreceptor control, and (3) a sub-cellular-level model of the arteriolar smooth mus- cle. Within a light-weight ontological framework, we leverage reference ontologies to match concepts across models. The light-weight ontology then helps us combine our three models into a merged model that can answer questions beyond the scope of any single model
    • ā€¦
    corecore