72 research outputs found

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Routing and transfers amongst parallel queues

    Get PDF
    This thesis is concerned with maximizing the performance of policies for routing and transferring jobs in systems of heterogeneous servers. The tools used are probabilistic modelling, optimization and simulation. First, a system is studied where incoming jobs are allocated to the queue belonging to one of a number of servers, each of which goes through alternating periods of being operative and inoperative. The objective is to evaluate and optimize performance and cost metrics. Jobs incur costs for the amount of time that they spend in a queue, before commencing service. The optimal routing policy for incoming jobs is obtained by solving numerical programming equations. A number of heuristic policies are compared against the optimal, and one dynamic routing policy is shown to perform well over a large range of parameters. Next, the problem of how best to deal with the transfer of jobs is considered. Jobs arrive externally into the queue attached to one of a number of servers, and on arrival are assigned a time-out period. Jobs whose time-out period expires before it commences service is instantaneously transferred to the end another queue, based on a routing policy. Upon transfer, a transfer cost is incurred. An approximation to the optimal routing policy is computed, and compared with a number of heuristic policies. One heuristic policy is found to perform well over a large range of parameters. The last model considered is the case where incoming jobs are allocated to the queue attached to one of a number of servers, each of which goes through periods of being operative and inoperative. Additionally, each job is assigned a time-out on arrival into a queue. Any job whose time-out period expires before it commences service is instantaneously transferred to the end of another queue, based on a transfer policy. The objective is to evaluate and optimize performance and cost metrics. Jobs incur costs for the amount of time that they spend in a queue, before commencing service, and additionally incur a cost for each transfer they experience. A number of heuristic transfer policies are evaluated and one heuristic which performs for a wide range of parameters is observed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Discrete-time queueing model for responsive network traffic and bottleneck queues

    Get PDF
    The Internet has been more and more intensively used in recent years. Although network infrastructure has been regularly upgraded, and the ability to manage heavy traffic greatly increased, especially on the core networks, congestion never ceases to appear, as the amount of traffic that flow on the Internet seems to be increasing at an even faster rate. Thus, congestion control mechanisms play a vital role in the functioning of the Internet. Active Queue Management (AQM) is a popular type of congestion control mechanism that is implemented on gateways (most notably routers), which can predict and avoid the congestion before it happens. When properly configured, AQMs can effectively reduce the congestion, and alleviate some of the problems such as global synchronisation and unfairness to bursty traffic. However, there are still many problems regarding AQMs. Most of the AQM schemes are quite sensitive to their parameters setting, and these parameters may be heavily dependent on the network traffic profile, which the administrator may not have intensive knowledge of, and is likely to change over time. When poorly configured, many AQMs perform no better than the basic drop-tail queue. There is currently no effective method to compare the performance of these AQM algorithms, caused by the parameter configuration problem. In this research, the aim is to propose a new analytical model, which mainly uses discrete-time queueing theory. A novel transient modification to the conventional equilibrium-based method is proposed, and it is utilised to further develop a dynamic interactive model of responsive traffic and bottleneck queues. Using step-by-step analysis, it represents the bursty traffic and oscillating queue length behaviour in practical network more accurately. It also provides an effective way of predicting the behaviour of a TCP-AQM system, allowing easier parameter optimisation for AQM schemes. Numerical solution using MATLAB and software simulation using NS-2 are used to extensively validate the proposed models, theories and conclusions

    Re-feedback: freedom with accountability for causing congestion in a connectionless internetwork

    Get PDF
    This dissertation concerns adding resource accountability to a simplex internetwork such as the Internet, with only necessary but sufficient constraint on freedom. That is, both freedom for applications to evolve new innovative behaviours while still responding responsibly to congestion; and freedom for network providers to structure their pricing in any way, including flat pricing. The big idea on which the research is built is a novel feedback arrangement termed ‘re-feedback’. A general form is defined, as well as a specific proposal (re-ECN) to alter the Internet protocol so that self-contained datagrams carry a metric of expected downstream congestion. Congestion is chosen because of its central economic role as the marginal cost of network usage. The aim is to ensure Internet resource allocation can be controlled either by local policies or by market selection (or indeed local lack of any control). The current Internet architecture is designed to only reveal path congestion to end-points, not networks. The collective actions of self-interested consumers and providers should drive Internet resource allocations towards maximisation of total social welfare. But without visibility of a cost-metric, network operators are violating the architecture to improve their customer’s experience. The resulting fight against the architecture is destroying the Internet’s simplicity and ability to evolve. Although accountability with freedom is the goal, the focus is the congestion metric, and whether an incentive system is possible that assures its integrity as it is passed between parties around the system, despite proposed attacks motivated by self-interest and malice. This dissertation defines the protocol and canonical examples of accountability mechanisms. Designs are all derived from carefully motivated principles. The resulting system is evaluated by analysis and simulation against the constraints and principles originally set. The mechanisms are proven to be agnostic to specific transport behaviours, but they could not be made flow-ID-oblivious
    corecore