95 research outputs found

    An approximate analysis of a bernoulli alternating service model

    No full text
    We consider a discrete-time queueing system with one server and two types of customers, say type-1 and type-2 customers. The server serves customers of either type alternately according to a Bernoulli pro- cess. The service times of the customers are deterministically equal to 1 time slot. For this queueing system, we derive a functional equation for the joint probability generating function of the number of type-1 and type-2 customers. The functional equation contains two unknown partial generating functions which complicates the analysis. We investigate the dominant singularity of these two unknown functions and propose an approximation for the coefficients of the Maclaurin series expansion of these functions. This approximation provides a fast method to compute approximations of various performance measures of interest

    Asymptotic behavior of the loss probability for an M/G/1/N queue with vacations

    Full text link
    In this paper, asymptotic properties of the loss probability are considered for an M/G/1/N queue with server vacations and exhaustive service discipline, denoted by an M/G/1/N -(V, E)-queue. Exact asymptotic rates of the loss probability are obtained for the cases in which the traffic intensity is smaller than, equal to and greater than one, respectively. When the vacation time is zero, the model considered degenerates to the standard M/G/1/N queue. For this standard queueing model, our analysis provides new or extended asymptotic results for the loss probability. In terms of the duality relationship between the M/G/1/N and GI/M/1/N queues, we also provide asymptotic properties for the standard GI/M/1/N model

    Applied Probability

    Get PDF
    [no abstract available
    corecore