6,358 research outputs found

    Tagging Personal Photos with Transfer Deep Learning

    Full text link
    The advent of mobile devices and media cloud services has led to the unprecedented growing of personal photo collections. One of the fundamental problems in managing the increasing number of photos is automatic image tagging. Existing research has pre-dominantly focused on tagging general Web images with a well-labelled image database, e.g., ImageNet. However, they can only achieve limited success on personal photos due to the domain gap-s between personal photos and Web images. These gaps originate from the differences in semantic distribution and visual appearance. To deal with these challenges, in this paper, we present a novel transfer deep learning approach to tag personal photos. Specifi-cally, to solve the semantic distribution gap, we have designed an ontology consisting of a hierarchical vocabulary tailored for per-sonal photos. This ontology is mined from 10, 000 active users i

    Automated identification of astronauts on board the International Space Station: A case study in space archaeology

    Get PDF
    We develop and apply a deep learning-based computer vision pipeline to automatically identify crew members in archival photographic imagery taken on-board the International Space Station. Our approach is able to quickly tag thousands of images from public and private photo repositories without human supervision with high degrees of accuracy, including photographs where crew faces are partially obscured. Using the results of our pipeline, we carry out a large-scale network analysis of the crew, using the imagery data to provide novel insights into the social interactions among crew during their missions

    Automated Identification of Astronauts on Board the International Space Station: A Case Study in Space Archaeology

    Get PDF
    We develop and apply a deep learning-based computer vision pipeline to automatically identify crew members in archival photographic imagery taken on-board the International Space Station. Our approach is able to quickly tag thousands of images from public and private photo repositories without human supervision with high degrees of accuracy, including photographs where crew faces are partially obscured. Using the results of our pipeline, we carry out a large-scale network analysis of the crew, using the imagery data to provide novel insights into the social interactions among crew during their missions

    Beyond Classification: Latent User Interests Profiling from Visual Contents Analysis

    Full text link
    User preference profiling is an important task in modern online social networks (OSN). With the proliferation of image-centric social platforms, such as Pinterest, visual contents have become one of the most informative data streams for understanding user preferences. Traditional approaches usually treat visual content analysis as a general classification problem where one or more labels are assigned to each image. Although such an approach simplifies the process of image analysis, it misses the rich context and visual cues that play an important role in people's perception of images. In this paper, we explore the possibilities of learning a user's latent visual preferences directly from image contents. We propose a distance metric learning method based on Deep Convolutional Neural Networks (CNN) to directly extract similarity information from visual contents and use the derived distance metric to mine individual users' fine-grained visual preferences. Through our preliminary experiments using data from 5,790 Pinterest users, we show that even for the images within the same category, each user possesses distinct and individually-identifiable visual preferences that are consistent over their lifetime. Our results underscore the untapped potential of finer-grained visual preference profiling in understanding users' preferences.Comment: 2015 IEEE 15th International Conference on Data Mining Workshop

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    What Twitter Profile and Posted Images Reveal About Depression and Anxiety

    Full text link
    Previous work has found strong links between the choice of social media images and users' emotions, demographics and personality traits. In this study, we examine which attributes of profile and posted images are associated with depression and anxiety of Twitter users. We used a sample of 28,749 Facebook users to build a language prediction model of survey-reported depression and anxiety, and validated it on Twitter on a sample of 887 users who had taken anxiety and depression surveys. We then applied it to a different set of 4,132 Twitter users to impute language-based depression and anxiety labels, and extracted interpretable features of posted and profile pictures to uncover the associations with users' depression and anxiety, controlling for demographics. For depression, we find that profile pictures suppress positive emotions rather than display more negative emotions, likely because of social media self-presentation biases. They also tend to show the single face of the user (rather than show her in groups of friends), marking increased focus on the self, emblematic for depression. Posted images are dominated by grayscale and low aesthetic cohesion across a variety of image features. Profile images of anxious users are similarly marked by grayscale and low aesthetic cohesion, but less so than those of depressed users. Finally, we show that image features can be used to predict depression and anxiety, and that multitask learning that includes a joint modeling of demographics improves prediction performance. Overall, we find that the image attributes that mark depression and anxiety offer a rich lens into these conditions largely congruent with the psychological literature, and that images on Twitter allow inferences about the mental health status of users.Comment: ICWSM 201

    Emerging technologies for learning report (volume 3)

    Get PDF

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Seeing Behind the Camera: Identifying the Authorship of a Photograph

    Full text link
    We introduce the novel problem of identifying the photographer behind a photograph. To explore the feasibility of current computer vision techniques to address this problem, we created a new dataset of over 180,000 images taken by 41 well-known photographers. Using this dataset, we examined the effectiveness of a variety of features (low and high-level, including CNN features) at identifying the photographer. We also trained a new deep convolutional neural network for this task. Our results show that high-level features greatly outperform low-level features. We provide qualitative results using these learned models that give insight into our method's ability to distinguish between photographers, and allow us to draw interesting conclusions about what specific photographers shoot. We also demonstrate two applications of our method.Comment: Dataset downloadable at http://www.cs.pitt.edu/~chris/photographer To Appear in CVPR 201
    • …
    corecore