361 research outputs found

    Segmentation of Myocardial Boundaries in Tagged Cardiac MRI Using Active Contours: A Gradient-Based Approach Integrating Texture Analysis

    Get PDF
    The noninvasive assessment of cardiac function is of first importance for the diagnosis of cardiovascular diseases. Among all medical scanners only a few enables radiologists to evaluate the local cardiac motion. Tagged cardiac MRI is one of them. This protocol generates on Short-Axis (SA) sequences a dark grid which is deformed in accordance with the cardiac motion. Tracking the grid allows specialists a local estimation of cardiac geometrical parameters within myocardium. The work described in this paper aims to automate the myocardial contours detection in order to optimize the detection and the tracking of the grid of tags within myocardium. The method we have developed for endocardial and epicardial contours detection is based on the use of texture analysis and active contours models. Texture analysis allows us to define energy maps more efficient than those usually used in active contours methods where attractor is often based on gradient and which were useless in our case of study, for quality of tagged cardiac MRI is very poor

    The Assessment of left ventricular Function in MRI using the detection of myocardial borders and optical flow approaches: A Review

    Get PDF
    The evaluation of left ventricular wall motion in Magnetic Resonance Imaging (MRI) clinical practice is based on a visual assessment of cine-MRI sequences. In fact, clinical interpreters (radiologists) proceed with a global visual evaluation of multiple cine-MRI sequences acquired in the three standard views. In addition, some functional parameters are quantified following a manual or a semi-automatic contouring of the myocardial borders. Although these parameters give information about the functional state of the left ventricle, they are not able to provide the location and the extent of wall motion abnormalities, which are associated with many cardiovascular diseases. In the past years, several approaches were developed to overcome the limitations of the classical evaluation techniques of left ventricular function. The aim of this article is to present an overview of the different methods and to summarize the relevant techniques based on myocardial contour detection and optical flow for regional assessment of left ventricular abnormalities

    MR imaging of left-ventricular function : novel image acquisition and analysis techniques.

    Get PDF
    Many cardiac diseases, such as myocardial ischemia, secondary to coronary artery disease, may be identified and localized through the analysis of cardiac deformations. Early efforts for quantifying ventricular wall motion used surgical implantation and tracking of radiopaque markers with X-ray imaging in canine hearts [1]. Such techniques are invasive and affect the regional motion pattern of the ventricular wall during the marker tracking process and, clearly are not feasible clinically. Noninvasive imaging techniques are vital and have been widely applied to the clinic. MRI is a noninvasive imaging technique with the capability to monitor and assess the progression of cardiovascular diseases (CVD) so that effective procedures for the care and treatment of patients can be developed by physicians and researchers. It is capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR imaging sequences. In order to assess cardiac function, there are two categories of indices that are used: global and regional indices. Global indices include ejection fraction, cavity volume, and myocardial mass [2]. They are important indices for cardiac disease diagnosis. However, these global indices are not specific for regional analysis. A quantitative assessment of regional parameters may prove beneficial for the diagnosis of disease and evaluation of severity and the quantification of treatment [3]. Local measures, such as wall deformation and strain in all regions of the heart, can provide objective regional quantification of ventricular wall function and relate to the location and extent of ischemic injury. This dissertation is concerned with the development of novel MR imaging techniques and image postprocessing algorithms to analyze left ventricular deformations. A novel pulse sequence, termed Orthogonal CSPAMM (OCSPAMM), has been proposed which results in the same acquisition time as SPAMM for 2D deformation estimation while keeping the main advantages of CSPAMM [4,5]: i.e., maintaining tag contrast through-out the ECG cycle. Different from CSPAMM, in OCSPAMM the second tagging pulse orientation is rotated 90 degrees relative to the first one so that motion information can be obtained simultaneously in two directions. This reduces the acquisition time by a factor of two as compared to the traditional CSPAMM, in which two separate imaging sequences are applied per acquisition. With the application of OCSPAMM, the effect of tag fading encountered in SPAMM tagging due to Tl relaxation is mitigated and tag deformations can be visualized for the entire cardiac cycle, including diastolic phases. A multilevel B-spline fitting method (MBS) has been proposed which incorporates phase-based displacement information for accurate calculation of 2D motion and strain from tagged MRI [6, 7]. The proposed method combines the advantages of continuity and smoothness of MBS, and makes use of phase information derived from tagged MR images. Compared to previous 2D B-spline-based deformation analysis methods, MBS has the following advantages: 1) It can simultaneously achieve a smooth deformation while accurately approximating the given data set; 2) Computationally, it is very fast; and 3) It can produce more accurate deformation results. Since the tag intersections (intersections between two tag lines) can be extracted accurately and are more or less distributed evenly over the myocardium, MBS has proven effective for 2D cardiac motion tracking. To derive phase-based displacements, 2D HARP and SinMod analysis techniques [8,9] were employed. By producing virtual tags from HARP /SinMod and calculating intersections of virtual tag lines, more data points are obtained. In the reference frame, virtual tag lines are the isoparametric curves of an undeformed 2D B-spline model. In subsequent frames, the locations of intersections of virtual tag lines over the myocardium are updated with phase-based displacement. The advantage of the technique is that in acquiring denser myocardial displacements, it uses both real and virtual tag line intersections. It is fast and more accurate than 2D HARP and SinMod tracking. A novel 3D sine wave modeling (3D SinMod) approach for automatic analysis of 3D cardiac deformations has been proposed [10]. An accelerated 3D complementary spatial modulation of magnetization (CSPAMM) tagging technique [11] was used to acquire complete 3D+t tagged MR data sets of the whole heart (3 dynamic CSPAMM tagged MRI volume with tags in different orientations), in-vivo, in 54 heart beats and within 3 breath-holds. In 3D SinMod, the intensity distribution around each pixel is modeled as a cosine wave front. The principle behind 3D SinMod tracking is that both phase and frequency for each voxel are determined directly from the frequency analysis and the displacement is calculated from the quotient of phase difference and local frequency. The deformation fields clearly demonstrate longitudinal shortening during systole. The contraction of the LV base towards the apex as well as the torsional motion between basal and apical slices is clearly observable from the displacements. 3D SinMod can automatically process the image data to derive measures of motion, deformations, and strains between consecutive pair of tagged volumes in 17 seconds. Therefore, comprehensive 4D imaging and postprocessing for determination of ventricular function is now possible in under 10 minutes. For validation of 3D SinMod, 7 3D+t CSPAMM data sets of healthy subjects have been processed. Comparison of mid-wall contour deformations and circumferential shortening results by 3D SinMod showed good agreement with those by 3D HARP. Tag lines tracked by the proposed technique were also compared with manually delineated ones. The average errors calculated for the systolic phase of the cardiac cycles were in the sub-pixel range

    Rotation and torsion of the left ventricle with cardiovascular magnetic resonance tagging : comparison of two analysis methods

    Get PDF
    Background Left ventricle rotation and torsion are fundamental components of myocardial function, and several software packages have been developed for analysis of these components. The purpose of this study was to compare the suitability of two software packages with different technical principles for analysis of rotation and torsion of the left ventricle during systole. Methods A group of hypertrophic cardiomyopathy (HCM) patients (N = 14, age 43 +/- 11 years), mutation carriers without hypertrophy (N = 10, age 34 +/- 13 years), and healthy relatives (N = 12, age 43 +/- 17 years) underwent a cardiovascular magnetic resonance examination, including spatial modulation of magnetization tagging sequences in basal and apical planes of the left ventricle. The tagging images were analyzed offline using a harmonic phase image analysis method with Gabor filtering and a non-rigid registration-based free-form deformation technique. Left-ventricle rotation and torsion scores were obtained from end-diastole to end-systole with both software. Results Analysis was successful in all cases with both software applications. End-systolic torsion values between the study groups were not statistically different with either software. End-systolic apical rotation, end-systolic basal rotation, and end-systolic torsion were consistently higher when analyzed with non-rigid registration than with harmonic phase-based analysis (p <0.0001). End-systolic rotation and torsion values had significant correlations between the two software (p <0.0001), most significant in the apical plane. Conclusions When comparing absolute values of rotation and torsion between different individuals, software-specific reference values are required. Harmonic phase flow with Gabor filtering and non-rigid registration-based methods can both be used reliably in the analysis of systolic rotation and torsion patterns of the left ventricle.Peer reviewe

    Rotation and torsion of the left ventricle with cardiovascular magnetic resonance tagging : comparison of two analysis methods

    Get PDF
    Background Left ventricle rotation and torsion are fundamental components of myocardial function, and several software packages have been developed for analysis of these components. The purpose of this study was to compare the suitability of two software packages with different technical principles for analysis of rotation and torsion of the left ventricle during systole. Methods A group of hypertrophic cardiomyopathy (HCM) patients (N = 14, age 43 +/- 11 years), mutation carriers without hypertrophy (N = 10, age 34 +/- 13 years), and healthy relatives (N = 12, age 43 +/- 17 years) underwent a cardiovascular magnetic resonance examination, including spatial modulation of magnetization tagging sequences in basal and apical planes of the left ventricle. The tagging images were analyzed offline using a harmonic phase image analysis method with Gabor filtering and a non-rigid registration-based free-form deformation technique. Left-ventricle rotation and torsion scores were obtained from end-diastole to end-systole with both software. Results Analysis was successful in all cases with both software applications. End-systolic torsion values between the study groups were not statistically different with either software. End-systolic apical rotation, end-systolic basal rotation, and end-systolic torsion were consistently higher when analyzed with non-rigid registration than with harmonic phase-based analysis (p <0.0001). End-systolic rotation and torsion values had significant correlations between the two software (p <0.0001), most significant in the apical plane. Conclusions When comparing absolute values of rotation and torsion between different individuals, software-specific reference values are required. Harmonic phase flow with Gabor filtering and non-rigid registration-based methods can both be used reliably in the analysis of systolic rotation and torsion patterns of the left ventricle.Peer reviewe

    Human Attention Detection Using AM-FM Representations

    Get PDF
    Human activity detection from digital videos presents many challenges to the computer vision and image processing communities. Recently, many methods have been developed to detect human activities with varying degree of success. Yet, the general human activity detection problem remains very challenging, especially when the methods need to work “in the wild” (e.g., without having precise control over the imaging geometry). The thesis explores phase-based solutions for (i) detecting faces, (ii) back of the heads, (iii) joint detection of faces and back of the heads, and (iv) whether the head is looking to the left or the right, using standard video cameras without any control on the imaging geometry. The proposed phase-based approach is based on the development of simple and robust methods that relie on the use of Amplitude Modulation - Frequency Modulation (AM-FM) models. The approach is validated using video frames extracted from the Advancing Outof- school Learning in Mathematics and Engineering (AOLME) project. The dataset consisted of 13,265 images from ten students looking at the camera, and 6,122 images from five students looking away from the camera. For the students facing the camera, the method was able to correctly classify 97.1% of them looking to the left and 95.9% of them looking to the right. For the students facing the back of the camera, the method was able to correctly classify 87.6% of them looking to the left and 93.3% of them looking to the right. The results indicate that AM-FM based methods hold great promise for analyzing human activity videos

    PDE Based Approach for Segmentation of Oriented Patterns

    Get PDF
    International audienc

    Quantification of MRI-derived myocardial motion in specified cardiac disorders

    Get PDF
    Several cardiac diseases affect myocardial function, with local myocardial deformation receiving much attention over the past few years. This work aimed to examine whether globally and locally analyzed quantitative cardiovascular magnetic resonance imaging-derived strain, rotation, and torsion of the heart would bring additional value and deeper understanding to myocardial mechanics in specified cardiovascular disorders. Patients with rheumatoid arthritis, tetralogy of Fallot, hereditary gelsolin amyloidosis, and hypertrophic cardiomyopathy, together with healthy controls, were investigated. A non-rigid registration-based software solution for myocardial tagging and feature tracking analysis was used for the quantification of left ventricular and right ventricular global and regional strain in different directions. Quantitative motion analysis showed that early treatment of rheumatoid arthritis was useful in retaining the diastolic function of the left ventricle. In adolescents with tetralogy of Fallot, right ventricular circumferential strain was increased relative to healthy controls. Tetralogy of Fallot subjects with increased pulmonary regurgitation had higher right ventricular longitudinal strain than subjects with less pulmonary regurgitation; this has been considered a compensation mechanism. Hereditary gelsolin amyloidosis showed local myocardial changes focused on the basal plane of the left ventricle and differing from the more common light-chain cardiac amyloidosis. The non-rigid registration-based technique was compared with the harmonic phase-based method with Gabor filtering in the analysis of myocardial tagging-derived rotation and torsion in subjects with hypertrophic cardiomyopathy. The absolute values obtained with the two software methods were significantly different, however, neither software showed significant differences in patients with hypertrophic cardiomyopathy relative to healthy controls. Motion parameters of both ventricles were associated with other quantitative cardiac magnetic resonance imaging parameters, such as volumetric measurements and T1 relaxation times, in the studies of this thesis. Tagging and feature tracking-derived motion parameters showed significant findings in local myocardial motion in rheumatoid arthritis, tetralogy of Fallot,and hereditary gelsolin amyloidosis. Software-based reference values are required when comparing motion parameters between study subjects. Currently, no standardization for measuring different deformation parameters, such as strain, rotation, or torsion exists, and several software solutions are available for analyzing these parameters. Variability between different software solutions and individual observers should be recognized.Useat sydÀnsairaudet vaikuttavat sydÀnlihaksen paikalliseen liikkeeseen, jonka vuoksi sydÀnlihaksen liikkeen tutkiminen on herÀttÀnyt paljon mielenkiintoa muutaman viime vuoden aikana. TÀmÀn työn tavoitteena oli tutkia magneettikuvauksessa mÀÀritettyjÀ sydÀnlihaksen globaaleja ja paikallisia kvantitatiivisia liikeparametrejÀ eri sydÀnsairauksissa. VÀitöskirjan osatöissÀ tutkittiin nivelreumapotilaita, Fallotin tetralogia -potilaita, Meretojantautipotilaita ja hypertrofisen kardiomyopatian omaavia potilaita, yhdessÀ terveiden verrokkien kanssa. Elastisen kuvarekisteröinnin omaavaa ohelmistoratkaisua kÀytettiin sydÀnlihaksen kvantitatiivisen venymÀn mittaamiseen eri suunnissa sydÀmen vasenta ja oikeaa kammiota. Kvantitatiivinen liikeanalyysi osoitti, ettÀ varhaisen nivelreuman lÀÀkehoito kannattaa, jotta sydÀmen vasemman kammion diastolinen funktio saadaan yllÀpidettyÀ. Teini-ikÀisillÀ Fallotin tetralogia -potilailla oikean kammion kehÀn suuntainen venymÀ oli selvÀsti voimakkaampaa kuin terveillÀ verrokeilla. LisÀksi Fallotin tetralogia -potilailla, joilla oli suuri pulmonaalilÀpÀn vuoto, oli voimakkaampi oikean kammion pitkittÀissuuntainen venymÀ, kuin potilailla, joilla vuoto oli pienempÀÀ; tÀmÀn ajateltiin olevan sydÀnlihaksen kompensaatiomekanismi. Meretojantautipotilailla havaittiin paikallisia sydÀnlihaksen liikkeen ja kudoskoostumuksen muutoksia erityisesti sydÀmen vasemman kammion basaalitasossa. Elastisen kuvarekisteröinnin menetelmÀÀ verrattiin harmoniseen Gabor -suodatettuun menetelmÀÀn sydÀnlihaksen vasemman kammion kiertymÀn ja vÀÀnnön analysoinnissa. NÀillÀ kahdella menetelmÀllÀ mÀÀritetyt absoluuttiset kiertymÀn ja vÀÀnnön arvot erosivat merkittÀvÀsti toisistaan, mutta kummallakaan menetelmÀllÀ mÀÀritetyt kiertymÀn ja vÀÀnnön arvot eivÀt eronneet merkittÀvÀsti hypertrofisen kardiomyopatian omaavien potilaiden ja terveiden verrokkien vÀlillÀ. SydÀmen vasemman ja oikean kammion liikeparametrejÀ verrattiin muihin kvantitatiivisiin sydÀmen magneettikuvauksen parametreihin, kuten kammioiden volumetrisiin mittauksiin ja sydÀnlihaksen T1 relaksaatioaikoihin, vÀitöskirjan eri osatöissÀ. SydÀmen magneettikuvauksessa mÀÀritetyt kvantitatiivisen liikeanalyysin eri parametrit osoittivat merkittÀviÀ löydöksiÀ sydÀnlihaksen toiminnassa nivelreumassa, Fallotin tetralogiassa ja Meretojantaudissa. Ohjelmistokohtaiset referenssiarvot ovat tarpeen, kun absoluuttisia liikeparametriarvoja vertaillaan eri yksilöiden vÀlillÀ. TÀllÀ hetkellÀ ei ole olemassa standardeja eri liikekomponenttien mittaamiselle ja eri ohjelmistoratkaisuja on useita erilaisia. VaihteluvÀli erilaisia ohjelmistoratkaisuja kÀytettÀessÀ, ja eri tarkkailijoiden vÀlinen vaihtelu, on syytÀ tiedostaa
    • 

    corecore