58 research outputs found

    HyperLearn: A Distributed Approach for Representation Learning in Datasets With Many Modalities

    Get PDF
    Multimodal datasets contain an enormous amount of relational information, which grows exponentially with the introduction of new modalities. Learning representations in such a scenario is inherently complex due to the presence of multiple heterogeneous information channels. These channels can encode both (a) inter-relations between the items of different modalities and (b) intra-relations between the items of the same modality. Encoding multimedia items into a continuous low-dimensional semantic space such that both types of relations are captured and preserved is extremely challenging, especially if the goal is a unified end-to-end learning framework. The two key challenges that need to be addressed are: 1) the framework must be able to merge complex intra and inter relations without losing any valuable information and 2) the learning model should be invariant to the addition of new and potentially very different modalities. In this paper, we propose a flexible framework which can scale to data streams from many modalities. To that end we introduce a hypergraph-based model for data representation and deploy Graph Convolutional Networks to fuse relational information within and across modalities. Our approach provides an efficient solution for distributing otherwise extremely computationally expensive or even unfeasible training processes across multiple-GPUs, without any sacrifices in accuracy. Moreover, adding new modalities to our model requires only an additional GPU unit keeping the computational time unchanged, which brings representation learning to truly multimodal datasets. We demonstrate the feasibility of our approach in the experiments on multimedia datasets featuring second, third and fourth order relations

    Hypergraph Motifs and Their Extensions Beyond Binary

    Full text link
    Hypergraphs naturally represent group interactions, which are omnipresent in many domains: collaborations of researchers, co-purchases of items, and joint interactions of proteins, to name a few. In this work, we propose tools for answering the following questions: (Q1) what are the structural design principles of real-world hypergraphs? (Q2) how can we compare local structures of hypergraphs of different sizes? (Q3) how can we identify domains from which hypergraphs are? We first define hypergraph motifs (h-motifs), which describe the overlapping patterns of three connected hyperedges. Then, we define the significance of each h-motif in a hypergraph as its occurrences relative to those in properly randomized hypergraphs. Lastly, we define the characteristic profile (CP) as the vector of the normalized significance of every h-motif. Regarding Q1, we find that h-motifs' occurrences in 11 real-world hypergraphs from 5 domains are clearly distinguished from those of randomized hypergraphs. Then, we demonstrate that CPs capture local structural patterns unique to each domain, and thus comparing CPs of hypergraphs addresses Q2 and Q3. The concept of CP is extended to represent the connectivity pattern of each node or hyperedge as a vector, which proves useful in node classification and hyperedge prediction. Our algorithmic contribution is to propose MoCHy, a family of parallel algorithms for counting h-motifs' occurrences in a hypergraph. We theoretically analyze their speed and accuracy and show empirically that the advanced approximate version MoCHy-A+ is more accurate and faster than the basic approximate and exact versions, respectively. Furthermore, we explore ternary hypergraph motifs that extends h-motifs by taking into account not only the presence but also the cardinality of intersections among hyperedges. This extension proves beneficial for all previously mentioned applications.Comment: Extended version of VLDB 2020 paper arXiv:2003.0185

    Structural and Dynamical Properties of Complex Networks.

    Full text link
    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks.We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our dissertation with a game theory model on social networks that tracks the dynamical evolution of a group of interacting agents such as diplomats or political lobbyists seeking to rise to a position of influence, by balancing competing interests.Ph.D.PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64757/1/gghoshal_1.pd

    Affective Image Content Analysis: Two Decades Review and New Perspectives

    Get PDF
    Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.Comment: Accepted by IEEE TPAM
    • …
    corecore