5,801 research outputs found

    RRS Discovery Cruise 360, 19 Jan-02 Feb 2011. Trials of the Autosub LR AUV, HyBIS, PELAGRA, Ellsworth Camera and MYRTLE-X Lander systems

    No full text
    There were five main objectives for the trials cruise: The first tests of the Autosub Long Range AUV, testing of the HyBIS video guided grab system, testing of the MYRTLE-X Lander systems, testing of a deep camera system for the Lake Ellsworth probe and test deployments of the PELAGRA neutrally buoyant sediment capture drifters.The working area was about 300 miles south west of the Canary Islands, in international waters, over benthic plains of 4000 m depth, with some tests of the video systems over a isolated sea mount rising to 1200 m depth. Most of the objectives of the cruise where met, with successful diving and control of the Autosub LR, tests of the HyBIS and Ellsworth camera systems, and 3 deployments and recoveries of two PELAGRA floats. Several wire tests of MYRTLE-X systems were carried out, predominantly successful, but concerns over the release system prevented a deployment of the lander

    Battery-less near field communications (nfc) sensors for internet of things (iot) applications

    Get PDF
    L’ implementació de la tecnologia de comunicació de camp proper (NFC) en els telèfons intel·ligents no para de créixer degut a l’ús d’aquesta per fer pagaments, això, junt amb el fet de poder aprofitar l’energia generada pel mòbil no només per la comunicació, sinó també per transmetre energia, el baix cost dels xips NFC, i el fet de que els telèfons tinguin connectivitat amb internet, possibilita i fa molt interesant el disseny d’etiquetes sense bateria incorporant-hi sensors i poder enviar la informació al núvol, dins del creixent escenari de l’internet de les coses (IoT). La present Tesi estudia la viabilitat d’aquests sensors, analitzant la màxima distància entre lector i sensor per proveir la potència necessària, presenta tècniques per augmentar el rang d’operació, i analitza els efectes de certs materials quan aquests estan propers a les antenes. Diversos sensors han estat dissenyats i analitzats i son presentats en aquest treball. Aquests son: Una etiqueta que mesura la humitat de la terra, la temperatura i la humitat relativa de l’aire per controlar les condicions de plantes. Un sensor per detectar la humitat en bolquers, imprès en material flexible que s’adapta a la forma del bolquer. Dues aplicacions, una per estimació de pH i una altre per avaluar el grau de maduració de fruites, basats en un sensor de color. I, per últim, s’estudia la viabilitat de sensors en implants per aplicacions mèdiques, analitzant l’efecte del cos i proposant un sistema per augmentar la profunditat a la que aquests es poden llegir utilitzant un telèfon mòbil. Tots aquests sensors poden ser alimentats i llegits per qualsevol dispositiu que disposin de connexió NFC.La implementación de la tecnología de comunicaciones de campo cercano (NFC) en los teléfonos inteligentes no para de crecer debido al uso de esta para llevar a cabo pagos, esto, junto con el hecho de poder aprovechar la energía generada por el móvil no sólo para la comunicación, sino también para transmitir energía, el bajo coste de los chips NFC, i el hecho que los teléfonos tengan conectividad a internet, posibilita y hace muy interesante el diseño de etiquetas sin batería que incorporen sensores i poder enviar la información a la nube, enmarcado en el creciente escenario del internet de las cosas (IoT). La presente Tesis estudia la viabilidad de estos sensores, analizando la máxima distancia entre lector i sensor para proveer la potencia necesaria, presenta técnicas para aumentar el rango de operación, y analiza los efectos de ciertos materiales cuando estos están cerca de las antenas. Varios sensores han sido diseñados y analizados y son presentados en este trabajo. Estos son: Una etiqueta que mide la humedad de la tierra, la temperatura y la humedad relativa del aire para controlar las condiciones de plantas. Un sensor para detectar la humedad en pañales, impreso en material flexible que se adapta a la forma del pañal. Dos aplicaciones, una para estimación de pH y otra para evaluar el grado de maduración de frutas, basados en un sensor de color. Y, por último, se estudia la viabilidad de sensores en implantes para aplicaciones médicas, analizando el efecto del cuerpo y proponiendo un sistema para aumentar la profundidad a la que estos se pueden leer usando un teléfono móvil. Todos estos sensores pueden ser alimentados y leídos por cualquier dispositivo que disponga de conexión NFC.The implementation of near field communication (NFC) technology into smartphones grows rapidly due the use of this technology as a payment system. This, altogether with the fact that the energy generated by the phone can be used not only to communicate but for power transfer as well, the low-cost of the NFC chips, and the fact that the smartphones have connectivity to internet, makes possible and very interesting the design of battery-less sensing tags which information can be sent to the cloud, within the growing internet of things (IoT) scenario. This Thesis studies the feasibility of these sensors, analysing the maximum distance between reader and sensor to provide the necessary power, presents techniques to increase the range of operation, and analyses the effects of certain materials when they are near to the antennas. Several sensors have been designed and analysed and are presented in this work. These are: a tag that measures the soil moisture, the temperature and the relative humidity of the air to control the conditions of plants. A moisture sensor for diapers, printed on flexible material that adapts to the diaper shape. Two applications, one for pH estimation and another for assessing the degree of fruit ripening, based on a colour sensor. And finally, the feasibility of sensors in implants for medical applications is studied, analysing the effect of the body and proposing a system to increase the depth at which they can be read using a mobile phone. All of these sensors can be powered and read by any NFC enabled device

    Physiological Parameter Sensing with Wearable Devices and Non-Contact Dopper Radar.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Dense and long-term monitoring of Earth surface processes with passive RFID -- a review

    Full text link
    Billions of Radio-Frequency Identification (RFID) passive tags are produced yearly to identify goods remotely. New research and business applications are continuously arising, including recently localization and sensing to monitor earth surface processes. Indeed, passive tags can cost 10 to 100 times less than wireless sensors networks and require little maintenance, facilitating years-long monitoring with ten's to thousands of tags. This study reviews the existing and potential applications of RFID in geosciences. The most mature application today is the study of coarse sediment transport in rivers or coastal environments, using tags placed into pebbles. More recently, tag localization was used to monitor landslide displacement, with a centimetric accuracy. Sensing tags were used to detect a displacement threshold on unstable rocks, to monitor the soil moisture or temperature, and to monitor the snowpack temperature and snow water equivalent. RFID sensors, available today, could monitor other parameters, such as the vibration of structures, the tilt of unstable boulders, the strain of a material, or the salinity of water. Key challenges for using RFID monitoring more broadly in geosciences include the use of ground and aerial vehicles to collect data or localize tags, the increase in reading range and duration, the ability to use tags placed under ground, snow, water or vegetation, and the optimization of economical and environmental cost. As a pattern, passive RFID could fill a gap between wireless sensor networks and manual measurements, to collect data efficiently over large areas, during several years, at high spatial density and moderate cost.Comment: Invited paper for Earth Science Reviews. 50 pages without references. 31 figures. 8 table

    IRIS Hand: Smart Robotic Prosthesis

    Get PDF
    This project involved the design and development of an operational first prototype for the IRIS platform – an anthropomorphic robotic hand capable of autonomously determining the shape of an object and selecting the most appropriate method for grabbing said object. Autonomy of the device is achieved through the use of a unique control system which takes input from sensors embedded in the hand to determine the shape of an object, the position of each finger, grip strength, and the quality of grip. The intended use for this technology is in the medical field as a prosthesis. The advantage of our system as a prosthesis is that its autonomous functions allow the user to access a wide variety of functionality more quickly and easily than similar, commercially available products

    Aerodynamic Performance of a Biologically Inspired Hybrid Plasma-Mechanical Flow Control and Sensing Device

    Get PDF
    The continued high global demand for passenger and freight air traffic along with increased use of unmanned aerial vehicles operating in broader Reynolds number regimes has resulted in researchers examining alternative technologies, which would result in safer, more reliable, and superior performing aircraft. Aerodynamic flow control may be one of the most promising approaches to solving this problem, having already proven its ability to enable higher flow efficiency while simultaneously improving overall control of flow behavior such as laminar-to-turbulent transition. Recent research in aerodynamic flow control has seen a pronounced growth in the areas of biomimicry and plasma flow control actuators. Plasma actuators offer an inexpensive and energy efficient method of flow control. In addition, plasma actuator technology has the potential to be applied to a host of other aircraft performance parameters including applications in radar cross section mitigation and in situ wing deicing. Biomimetic researchers have studied large scale mechanics and phenomena such as flapping mechanics, and wing morphology, as well as small scale factors such as feather fluttering and microscale feather geometry. The proliferation of interest in these fields laid the foundation and inspiration for the development of a novel aerodynamic flow control and sensing device known as the compliant electrode discharge device, commonly referred to by the inventors as “plasma feathers”. This study consists of an investigation into the behavior of the compliant electrode device and its aerodynamic characteristics and performance during its flapping mode operation. Three models of varying aspect ratio were constructed, characterized through a modal analysis, and then subsequently tested for behavioral characteristic and aerodynamic performance. The behavioral testing shows that there is clearly defined range of pulsing ratios and duty cycle combinations that will likely result in desired behavior. The aerodynamic performance was investigated via two-dimensional two-component particle image velocimetry. It’s shown in tunnel-on testing that the device can favorably affect a low Reynolds number flow and potentially be used as an active airbrake in higher Reynolds number flows. Testing in quiescent air demonstrated that flows with velocities on the order of the speed of the tip of the compliant electrode can be induced in two momentum jets that are similar to the superposition of a traditional dielectric barrier discharges induced jet (horizontally oriented jet) and a synthetic jet’s induced jet (vertically oriented jet) overlayed upon one another allowing for a broad range of low Reynolds number applications

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance
    corecore