680 research outputs found

    Intraoperative tissue classification methods in orthopedic and neurological surgeries: A systematic review

    Full text link
    Accurate tissue differentiation during orthopedic and neurological surgeries is critical, given that such surgeries involve operations on or in the vicinity of vital neurovascular structures and erroneous surgical maneuvers can lead to surgical complications. By now, the number of emerging technologies tackling the problem of intraoperative tissue classification methods is increasing. Therefore, this systematic review paper intends to give a general overview of existing technologies. The review was done based on the PRISMA principle and two databases: PubMed and IEEE Xplore. The screening process resulted in 60 full-text papers. The general characteristics of the methodology from extracted papers included data processing pipeline, machine learning methods if applicable, types of tissues that can be identified with them, phantom used to conduct the experiment, and evaluation results. This paper can be useful in identifying the problems in the current status of the state-of-the-art intraoperative tissue classification methods and designing new enhanced techniques

    Smart Materials for Wearable Healthcare Devices

    Get PDF
    Wearable devices seem to have great potential that could result in a revolutionary non-clinical approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This chapter gives a concise review of some of the main concepts and approaches related to recent advances and developments in the scope of wearable devices from the perspective of emerging materials. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are clearly highlighted and criticized

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Optically and Electrically assisted Micro-Indentation

    Get PDF

    Advanced Materials, Structures and Processing Technologies Based on Pulsed Laser

    Get PDF
    Pulsed lasers are lasers with a single laser pulse width of less than 0.25 s, operating only once in every certain time interval. Commonly used pulsed lasers are nanosecond, femtosecond, and picosecond lasers. A pulsed laser produces short pulses with a short interaction time with the material, which can largely avoid impact on the thermal movement of molecules and has a minimal thermal impact on the surrounding materials, thus having significant advantages in precision microfabrication. It is now widely used in flexible electronics, chips, medicine, and other fields, such as photographic resin curing, microwelding, vision correction, heart stent manufacturing, etc. However, as an emerging processing technology, the application prospects of pulsed lasers have yet to be fully expanded, and there is still a need to continuously explore the mechanisms of interaction with materials, to manufacture advanced functional structures, and to develop advanced process technologies
    corecore