6,599 research outputs found

    Development of a multi-modal tactile force sensing system for deep-sea applications

    Get PDF
    With the increasing demand for autonomy in robotic systems, there is a rising need for sensory data sensed via different modalities. In this way system states and the aspects of unstructured environments can be assessed in the most detailed fashion possible, thus providing a basis for making decisions regarding the robotâ s task. Com- pared to other sensing modalities, the sense of touch is underrepresented in todayâ s robots. That is where this thesis comes in. A tactile sensing system is developed that combines several modalities of contact sensing. The use of the tactile sense in robotic grippers is of great relevance especially for robotic systems in the deep sea. Up to now manipulation systems in master-slave control mode have been used in this area of application. An operator performing the manipulation task has to rely on visual feedback coming from cameras. Working on the oceanâ s seafloor means having to cope with conditions of limited visibility caused by swirled-up sediment

    Grasping Strategy and Control Algorithm of Two Robotic Fingers Equipped with Optical Three-Axis Tactile Sensors

    Get PDF
    AbstractThis paper presents grasping strategy of robot fingers based on tactile sensing information acquired by optical three-axis tactile sensor. We developed a novel optical three-axis tactile sensor system based on an optical waveguide transduction method capable of acquiring normal and shearing forces. The sensors are mounted on fingertips of two robotic fingers. To enhance the ability of recognizing and manipulating objects, we designed the robot control system architecture comprised of connection module, thinking routines, and a hand/finger control modules. We proposed tactile sensing-based control algorithm in the robot finger control system to control fingertips movements by defining optimum grasp pressure and perform re-push movement when slippage was detected. Verification experiments were conducted whose results revealed that the finger's system managed to recognize the stiffness of unknown objects and complied with sudden changes of the object's weight during object manipulation tasks

    GelSight Svelte Hand: A Three-finger, Two-DoF, Tactile-rich, Low-cost Robot Hand for Dexterous Manipulation

    Full text link
    This paper presents GelSight Svelte Hand, a novel 3-finger 2-DoF tactile robotic hand that is capable of performing precision grasps, power grasps, and intermediate grasps. Rich tactile signals are obtained from one camera on each finger, with an extended sensing area similar to the full length of a human finger. Each finger of GelSight Svelte Hand is supported by a semi-rigid endoskeleton and covered with soft silicone materials, which provide both rigidity and compliance. We describe the design, fabrication, functionalities, and tactile sensing capability of GelSight Svelte Hand in this paper. More information is available on our website: \url{https://gelsight-svelte.alanz.info}.Comment: Submitted and accepted to IROS 2023 workshop on Visuo-Tactile Perception, Learning, Control for Manipulation and HRI (IROS RoboTac 2023

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe
    • …
    corecore