33 research outputs found

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Haptic perception in virtual reality in sighted and blind individuals

    Get PDF
    The incorporation of the sense of touch into virtual reality is an exciting development. However, research into this topic is in its infancy. This experimental programme investigated both the perception of virtual object attributes by touch and the parameters that influence touch perception in virtual reality with a force feedback device called the PHANTOM (TM) (www.sensable.com). The thesis had three main foci. Firstly, it aimed to provide an experimental account of the perception of the attributes of roughness, size and angular extent by touch via the PHANTOM (TM) device. Secondly, it aimed to contribute to the resolution of a number of other issues important in developing an understanding of the parameters that exert an influence on touch in virtual reality. Finally, it aimed to compare touch in virtual reality between sighted and blind individuals. This thesis comprises six experiments. Experiment one examined the perception of the roughness of virtual textures with the PHANTOM (TM) device. The effect of the following factors was addressed: the groove width of the textured stimuli; the endpoint used (stylus or thimble) with the PHANTOM (TM); the specific device used (PHANTOM (TM) vs. IE3000) and the visual status (sighted or blind) of the participants. Experiment two extended the findings of experiment one by addressing the impact of an exploration related factor on perceived roughness, that of the contact force an individual applies to a virtual texture. The interaction between this variable and the factors of groove width, endpoint, and visual status was also addressed. Experiment three examined the perception of the size and angular extent of virtual 3-D objects via the PHANTOM (TM). With respect to the perception of virtual object size, the effect of the following factors was addressed: the size of the object (2.7,3.6,4.5 cm); the type of virtual object (cube vs. sphere); the mode in which the virtual objects were presented; the endpoint used with the PHANTOM (TM) and the visual status of the participants. With respect to the perception of virtual object angular extent, the effect of the following factors was addressed: the angular extent of the object (18,41 and 64°); the endpoint used with the PHANTOM (TM) and the visual status of the participants. Experiment four examined the perception of the size and angular extent of real counterparts to the virtual 3-D objects used in experiment three. Experiment four manipulated the conditions under which participants examined the real objects. Participants were asked to give judgements of object size and angular extent via the deactivated PHANTOM (TM), a stylus probe, a bare index finger and without any constraints on their exploration. In addition to the above exploration type factor, experiment four examined the impact of the same factors on perceived size and angular extent in the real world as had been examined in virtual reality. Experiments five and six examined the consistency of the perception of linear extent across the 3-D axes in virtual space. Both experiments manipulated the following factors: Line extent (2.7,3.6 and 4.5cm); line dimension (x, y and z axis); movement type (active vs. passive movement) and visual status. Experiment six additionally manipulated the direction of movement within the 3-D axes. Perceived roughness was assessed by the method of magnitude estimation. The perceived size and angular extent of the various virtual stimuli and their real counterparts was assessed by the method of magnitude reproduction. This technique was also used to assess perceived extent across the 3-D axes. Touch perception via the PHANTOM (TM) was found to be broadly similar for sighted and blind participants. Touch perception in virtual reality was also found to be broadly similar between two different 3-D force feedback devices (the PHANTOM (TM) and the IE3000). However, the endpoint used with the PHANTOM (TM) device was found to exert significant, but inconsistent effects on the perception of virtual object attributes. Touch perception with the PHANTOM (TM) across the 3-D axes was found to be anisotropic in a similar way to the real world, with the illusion that radial extents were perceived as longer than equivalent tangential extents. The perception of 3-D object size and angular extent was found to be comparable between virtual reality and the real world, particularly under conditions where the participants' exploration of the real objects was constrained to a single point of contact. An intriguing touch illusion, whereby virtual objects explored from the inside were perceived to be larger than the same objects perceived from the outside was found to occur widely in virtual reality, in addition to the real world. This thesis contributes to knowledge of touch perception in virtual reality. The findings have interesting implications for theories of touch perception, both virtual and real

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Tactile displays, design and evaluation

    Get PDF
    Fritschi M. Tactile displays, design and evaluation. Bielefeld: Universität Bielefeld; 2016.This thesis presents the design and development of several tactile displays, as well as their eventual integration into a framework of tactile and kinesthetic stimulation. As a basis for the design of novel devices, an extensive survey of existing actuator principles and existing realizations of tactile displays is complemented by neurobiological and psychophysical findings. The work is structured along three main goals: First, novel actuator concepts are explored whose performance can match the challenging capabilities of human tactile perception. Second, novel kinematic concepts for experimental platforms are investigated that target an almost unknown sub-modality of tactile perception: The perception of shear force. Third, a setup for integrated tactile-kinesthetic displays is realized, and a first study on the psychophysical correlation between the tactile and the kinesthetic portion of haptic information is conducted. The developed devices proved to exceed human tactile capabilities and have already been used to learn more about the human tactile sense

    Musical Haptics

    Get PDF
    This Open Access book offers an original interdisciplinary overview of the role of haptic feedback in musical interaction. Divided into two parts, part I examines the tactile aspects of music performance and perception, discussing how they affect user experience and performance in terms of usability, functionality and perceived quality of musical instruments. Part II presents engineering, computational, and design approaches and guidelines that have been applied to render and exploit haptic feedback in digital musical interfaces. Musical Haptics introduces an emerging field that brings together engineering, human-computer interaction, applied psychology, musical aesthetics, and music performance. The latter, defined as the complex system of sensory-motor interactions between musicians and their instruments, presents a well-defined framework in which to study basic psychophysical, perceptual, and biomechanical aspects of touch, all of which will inform the design of haptic musical interfaces. Tactile and proprioceptive cues enable embodied interaction and inform sophisticated control strategies that allow skilled musicians to achieve high performance and expressivity. The use of haptic feedback in digital musical interfaces is expected to enhance user experience and performance, improve accessibility for disabled persons, and provide an effective means for musical tuition and guidance

    Advancing proxy-based haptic feedback in virtual reality

    Get PDF
    This thesis advances haptic feedback for Virtual Reality (VR). Our work is guided by Sutherland's 1965 vision of the ultimate display, which calls for VR systems to control the existence of matter. To push towards this vision, we build upon proxy-based haptic feedback, a technique characterized by the use of passive tangible props. The goal of this thesis is to tackle the central drawback of this approach, namely, its inflexibility, which yet hinders it to fulfill the vision of the ultimate display. Guided by four research questions, we first showcase the applicability of proxy-based VR haptics by employing the technique for data exploration. We then extend the VR system's control over users' haptic impressions in three steps. First, we contribute the class of Dynamic Passive Haptic Feedback (DPHF) alongside two novel concepts for conveying kinesthetic properties, like virtual weight and shape, through weight-shifting and drag-changing proxies. Conceptually orthogonal to this, we study how visual-haptic illusions can be leveraged to unnoticeably redirect the user's hand when reaching towards props. Here, we contribute a novel perception-inspired algorithm for Body Warping-based Hand Redirection (HR), an open-source framework for HR, and psychophysical insights. The thesis concludes by proving that the combination of DPHF and HR can outperform the individual techniques in terms of the achievable flexibility of the proxy-based haptic feedback.Diese Arbeit widmet sich haptischem Feedback für Virtual Reality (VR) und ist inspiriert von Sutherlands Vision des ultimativen Displays, welche VR-Systemen die Fähigkeit zuschreibt, Materie kontrollieren zu können. Um dieser Vision näher zu kommen, baut die Arbeit auf dem Konzept proxy-basierter Haptik auf, bei der haptische Eindrücke durch anfassbare Requisiten vermittelt werden. Ziel ist es, diesem Ansatz die für die Realisierung eines ultimativen Displays nötige Flexibilität zu verleihen. Dazu bearbeiten wir vier Forschungsfragen und zeigen zunächst die Anwendbarkeit proxy-basierter Haptik durch den Einsatz der Technik zur Datenexploration. Anschließend untersuchen wir in drei Schritten, wie VR-Systeme mehr Kontrolle über haptische Eindrücke von Nutzern erhalten können. Hierzu stellen wir Dynamic Passive Haptic Feedback (DPHF) vor, sowie zwei Verfahren, die kinästhetische Eindrücke wie virtuelles Gewicht und Form durch Gewichtsverlagerung und Veränderung des Luftwiderstandes von Requisiten vermitteln. Zusätzlich untersuchen wir, wie visuell-haptische Illusionen die Hand des Nutzers beim Greifen nach Requisiten unbemerkt umlenken können. Dabei stellen wir einen neuen Algorithmus zur Body Warping-based Hand Redirection (HR), ein Open-Source-Framework, sowie psychophysische Erkenntnisse vor. Abschließend zeigen wir, dass die Kombination von DPHF und HR proxy-basierte Haptik noch flexibler machen kann, als es die einzelnen Techniken alleine können
    corecore