333 research outputs found

    Body Lift and Drag for a Legged Millirobot in Compliant Beam Environment

    Full text link
    Much current study of legged locomotion has rightly focused on foot traction forces, including on granular media. Future legged millirobots will need to go through terrain, such as brush or other vegetation, where the body contact forces significantly affect locomotion. In this work, a (previously developed) low-cost 6-axis force/torque sensing shell is used to measure the interaction forces between a hexapedal millirobot and a set of compliant beams, which act as a surrogate for a densely cluttered environment. Experiments with a VelociRoACH robotic platform are used to measure lift and drag forces on the tactile shell, where negative lift forces can increase traction, even while drag forces increase. The drag energy and specific resistance required to pass through dense terrains can be measured. Furthermore, some contact between the robot and the compliant beams can lower specific resistance of locomotion. For small, light-weight legged robots in the beam environment, the body motion depends on both leg-ground and body-beam forces. A shell-shape which reduces drag but increases negative lift, such as the half-ellipsoid used, is suggested to be advantageous for robot locomotion in this type of environment.Comment: First three authors contributed equally. Accepted to ICRA 201

    Terrain classification for a quadruped robot

    Get PDF
    Using data retrieved from the Puppy II robot at the University of Zurich (UZH), we show that machine learning techniques with non-linearities and fading memory are effective for terrain classification, both supervised and unsupervised, even with a limited selection of input sensors. The results indicate that most information for terrain classification is found in the combination of tactile sensors and proprioceptive joint angle sensors. The classification error is small enough to have a robot adapt the gait to the terrain and hence move more robustly

    The Design and Realization of a Sensitive Walking Platform

    Get PDF
    Legged locomotion provides robots with the capability of adapting to different terrain conditions. General complex terrain traversal methodologies solely rely on proprioception which readily leads to instability under dynamical situations. Biological legged locomotion utilizes somatosensory feedback to sense the real-time interaction of the feet with ground to enhance stability. Nevertheless, limited attention has been given to sensing the feet-terrain interaction in robotics. This project introduces a paradigm shift in robotic walking called sensitive walking realized through the development of a compliant bipedal platform. Sensitive walking extends upon the success of sensitive manipulation which utilizes tactile feedback to localize an object to grasp, determine an appropriate manipulation configuration, and constantly adapts to maintain grasp stability. Based on the same concepts of sensitive manipulation, sensitive walking utilizes podotactile feedback to enhance real-time walking stability by effectively adapting to variations in the terrain. Adapting legged robotic platforms to sensitive walking is not as simple as attaching any tactile sensor to the feet of a robot. The sensors and the limbs need to have specific characteristics that support the implementation of the algorithms and allow the biped to safely come in contact with the terrain and detect the interaction forces. The challenges in handling the synergy of hardware and sensor design, and fabrication in a podotactile-based sensitive walking robot are addressed. The bipedal platform provides contact compliance through 12 series elastic actuators and contains 190 highly flexible tactile sensors capable of sensing forces at any incident angle. Sensitive walking algorithms are provided to handle multi-legged locomotion challenges including stairs and irregular terrain

    ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT

    Get PDF
    Traversability characteristics of the robot working environment are crucial in planning an efficient path for a robot operating in rough unstructured areas. In the literature, approaches to wheeled or tracked robots can be found, but a relatively little attention is given to walking multi-legged robots. Moreover, the existing approaches for terrain traversability assessment seem to be focused on gathering key features from a terrain model acquired from range data or camera image and only occasionally supplemented with proprioceptive sensing that expresses the interaction of the robot with the terrain. This paper addresses the problem of traversability cost evaluation based on proprioceptive sensing for a hexapod walking robot while optimizing different criteria. We present several methods of evaluating the robot-terrain interaction that can be used as a cost function for an assessment of the robot motion that can be utilized in high-level path-planning algorithms

    Simplifying robotic locomotion by escaping traps via an active tail

    Get PDF
    Legged systems offer the ability to negotiate and climb heterogeneous terrains, more so than their wheeled counterparts \cite{freedberg_2012}. However, in certain complex environments, these systems are susceptible to failure conditions. These scenarios are caused by the interplay between the locomotor's kinematic state and the local terrain configuration, thus making them challenging to predict and overcome. These failures can cause catastrophic damage to the system and thus, methods to avoid such scenarios have been developed. These strategies typically take the form of environmental sensing or passive mechanical elements that adapt to the terrain. Such methods come at an increased control and mechanical design complexity for the system, often still being susceptible to imperceptible hazards. In this study, we investigated whether a tail could serve to offload this complexity by acting as a mechanism to generate new terradynamic interactions and mitigate failure via substrate contact. To do so, we developed a quadrupedal C-leg robophysical model (length and width = 27 cm, limb radius = 8 cm) capable of walking over rough terrain with an attachable actuated tail (length = 17 cm). We investigated three distinct tail strategies: static pose, periodic tapping, and load-triggered (power) tapping, while varying the angle of the tail relative to the body. We challenged the system to traverse a terrain (length = 160 cm, width = 80 cm) of randomized blocks (length and width = 10 cm, height = 0 to 12 cm) whose dimensions were scaled to the robot. Over this terrain, the robot exhibited trapping failures independent of gait pattern. Using the tail, the robot could free itself from trapping with a probability of 0 to 0.5, with the load-driven behaviors having comparable performance to low frequency periodic tapping across all tested tail angles. Along with increasing this likelihood of freeing, the robot displayed a longer survival distance over the rough terrain with these tail behaviors. In summary, we present the beginning of a framework that leverages mechanics via tail-ground interactions to offload limb control and design complexity to mitigate failure and improve legged system performance in heterogeneous environments.M.S

    The Design and Realization of a Sensitive Walking Platform

    Get PDF
    Caminante is a bipedal platform design to test sensitive walking. The robot was designed with all the characteristics that were deemed necessary in order to test successfully develop and test new control and wait generation systems that can be applied to all legged robots. A twelve degrees of freedom platform with series elastic actuators that mimics the major human leg joints was developed and constructed. The system uses cable driven SEA’s for compliance and force control. Two 36 tactile sensor arrays capable of measure shear and normal forces on the sole of the feet were developed to measure the forces generated by walking and develop better control schemes for the bipedal system

    Real-time Digital Double Framework to Predict Collapsible Terrains for Legged Robots

    Get PDF
    Inspired by the digital twinning systems, a novel real-time digital double framework is developed to enhance robot perception of the terrain conditions. Based on the very same physical model and motion control, this work exploits the use of such simulated digital double synchronized with a real robot to capture and extract discrepancy information between the two systems, which provides high dimensional cues in multiple physical quantities to represent differences between the modelled and the real world. Soft, non-rigid terrains cause common failures in legged locomotion, whereby visual perception solely is insufficient in estimating such physical properties of terrains. We used digital double to develop the estimation of the collapsibility, which addressed this issue through physical interactions during dynamic walking. The discrepancy in sensory measurements between the real robot and its digital double are used as input of a learning-based algorithm for terrain collapsibility analysis. Although trained only in simulation, the learned model can perform collapsibility estimation successfully in both simulation and real world. Our evaluation of results showed the generalization to different scenarios and the advantages of the digital double to reliably detect nuances in ground conditions.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Preprint version. Accepted June 202

    ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT

    Get PDF
    corecore