10 research outputs found

    Tackling the Problem of Data Imbalancing for Melanoma Classification

    No full text
    International audienceMalignant melanoma is the most dangerous type of skin cancer, yet melanoma is the most treatable kind of cancer when diagnosed at an early stage. In this regard, Computer-Aided Diagnosis systems based on machine learning have been developed to discern melanoma lesions from benign and dysplastic nevi in dermoscopic images. Similar to a large range of real world applications encountered in machine learning, melanoma classification faces the challenge of imbalanced data, where the percentage of melanoma cases in comparison with benign and dysplastic cases is far less. This article analyzes the impact of data balancing strategies at the training step. Subsequently, Over-Sampling (OS) and Under-Sampling (US) are extensively compared in both feature and data space, revealing that NearMiss-2 (NM2) outperform other methods achieving Sensitivity (SE) and Specificity (SP) of 91.2% and 81.7%, respectively. More generally, the reported results highlight that methods based on US or combination of OS and US in feature space outperform the others

    Imbalanced Ensemble Classifier for learning from imbalanced business school data set

    Full text link
    Private business schools in India face a common problem of selecting quality students for their MBA programs to achieve the desired placement percentage. Generally, such data sets are biased towards one class, i.e., imbalanced in nature. And learning from the imbalanced dataset is a difficult proposition. This paper proposes an imbalanced ensemble classifier which can handle the imbalanced nature of the dataset and achieves higher accuracy in case of the feature selection (selection of important characteristics of students) cum classification problem (prediction of placements based on the students' characteristics) for Indian business school dataset. The optimal value of an important model parameter is found. Numerical evidence is also provided using Indian business school dataset to assess the outstanding performance of the proposed classifier

    Search for resolution invariant wavelet features of melanoma learned by a limited ANN classifier

    Get PDF

    Resolution invariant wavelet features of melanoma studied by SVM classifiers

    Get PDF
    This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks

    Partial order label decomposition approaches for melanoma diagnosis

    Get PDF
    Melanoma is a type of cancer that develops from the pigment-containing cells known as melanocytes. Usually occurring on the skin, early detection and diagnosis is strongly related to survival rates. Melanoma recognition is a challenging task that nowadays is performed by well trained dermatologists who may produce varying diagnosis due to the task complexity. This motivates the development of automated diagnosis tools, in spite of the inherent difficulties (intra-class variation, visual similarity between melanoma and non-melanoma lesions, among others). In the present work, we propose a system combining image analysis and machine learning to detect melanoma presence and severity. The severity is assessed in terms of melanoma thickness, which is measured by the Breslow index. Previous works mainly focus on the binary problem of detecting the presence of the melanoma. However, the system proposed in this paper goes a step further by also considering the stage of the lesion in the classification task. To do so, we extract 100 features that consider the shape, colour, pigment network and texture of the benign and malignant lesions. The problem is tackled as a five-class classification problem, where the first class represents benign lesions, and the remaining four classes represent the different stages of the melanoma (via the Breslow index). Based on the problem definition, we identify the learning setting as a partial order problem, in which the patterns belonging to the different melanoma stages present an order relationship, but where there is no order arrangement with respect to the benign lesions. Under this assumption about the class topology, we design several proposals to exploit this structure and improve data preprocessing. In this sense, we experimentally demonstrate that those proposals exploiting the partial order assumption achieve better performance than 12 baseline nominal and ordinal classifiers (including a deep learning model) which do not consider this partial order. To deal with class imbalance, we additionally propose specific over-sampling techniques that consider the structure of the problem for the creation of synthetic patterns. The experimental study is carried out with clinician-curated images from the Interactive Atlas of Dermoscopy, which eases reproducibility of experiments. Concerning the results obtained, in spite of having augmented the complexity of the classification problem with more classes, the performance of our proposals in the binary problem is similar to the one reported in the literature

    Partial order label decomposition approaches for melanoma diagnosis

    Get PDF
    Melanoma is a type of cancer that develops from the pigment-containing cells known as melanocytes. Usually occurring on the skin, early detection and diagnosis is strongly related to survival rates. Melanoma recognition is a challenging task that nowadays is performed by well trained dermatologists who may produce varying diagnosis due to the task complexity. This motivates the development of automated diagnosis tools, in spite of the inherent difficulties (intra-class variation, visual similarity between melanoma and non-melanoma lesions, among others). In the present work, we propose a system combining image analysis and machine learning to detect melanoma presence and severity. The severity is assessed in terms of melanoma thickness, which is measured by the Breslow index. Previous works mainly focus on the binary problem of detecting the presence of the melanoma. However, the system proposed in this paper goes a step further by also considering the stage of the lesion in the classification task. To do so, we extract 100 features that consider the shape, colour, pigment network and texture of the benign and malignant lesions. The problem is tackled as a five-class classification problem, where the first class represents benign lesions, and the remaining four classes represent the different stages of the melanoma (via the Breslow index). Based on the problem definition, we identify the learning setting as a partial order problem, in which the patterns belonging to the different melanoma stages present an order relationship, but where there is no order arrangement with respect to the benign lesions. Under this assumption about the class topology, we design several proposals to exploit this structure and improve data preprocessing. In this sense, we experimentally demonstrate that those proposals exploiting the partial order assumption achieve better performance than 12 baseline nominal and ordinal classifiers (including a deep learning model) which do not consider this partial order. To deal with class imbalance, we additionally propose specific over-sampling techniques that consider the structure of the problem for the creation of synthetic patterns. The experimental study is carried out with clinician-curated images from the Interactive Atlas of Dermoscopy, which eases reproducibility of experiments. Concerning the results obtained, in spite of having augmented the complexity of the classification problem with more classes, the performance of our proposals in the binary problem is similar to the one reported in the literature

    A Rule-based Method Applied to the Imbalanced Classification of Radiation Toxicity

    Get PDF
    This paper describes a rule-based classifier (DEQAR-C), which is set up by the combination of selected rules after a two-phase process. In the first phase, the rules are generated and sorted for each class, and then a selection is performed to obtain a final list of rules. A real imbalanced dataset regarding the toxicity during and after radiation therapy for prostate cancer has been employed in a comparison with other predictive methods (rule-based, artificial neural networks, trees, Bayesian and logistic regression). DEQAR-C produced excellent results in an evaluation regarding several performance measures (accuracy, Matthews correlation coefficient, sensitivity, specificity, precision, recall and F-measure) and by using cross-validation. Therefore, it was employed to obtain a predictive model using the full data. The resultant model is easily interpretable, combining three rules with two variables, and suggesting conditions that are mostly confirmed by the medical literature

    Skin Lesion Computational Diagnosis of Dermoscopic Images: Ensemble Models based on Input Feature Manipulation

    Get PDF
    Background and objectives: The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Methods: Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. Results: The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. Conclusions: The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results

    Tackling the Problem of Data Imbalancing for Melanoma Classification

    No full text
    Comunicació de congrés presentada a: 3rd International Conference on Bioimaging, BIOIMAGING 2016 - Part of 9th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2016, Roma, ItalyMalignant melanoma is the most dangerous type of skin cancer, yet melanoma is the most treatable kind of cancer when diagnosed at an early stage. In this regard, Computer-Aided Diagnosis systems based on machine learning have been developed to discern melanoma lesions from benign and dysplastic nevi in dermoscopic images. Similar to a large range of real world applications encountered in machine learning, melanoma classification faces the challenge of imbalanced data, where the percentage of melanoma cases in comparison with benign and dysplastic cases is far less. This article analyzes the impact of data balancing strategies at the training step. Subsequently, Over-Sampling (OS) and Under-Sampling (US) are extensively compared in both feature and data space, revealing that NearMiss-2 (NM2) outperform other methods achieving Sensitivity (SE) and Specificity (SP) of 91.2% and 81.7%, respectively. More generally, the reported results highlight that methods based on US or combination of OS and US in feature space outperform the other
    corecore