1,400 research outputs found

    Security Enhancement in Surveillance Cloud Using Machine Learning Techniques

    Get PDF
    Most industries are now switching from traditional modes to cloud environments and cloud-based services. It is essential to create a secure environment for the cloud space in order to provide consumers with a safe and protected environment for cloud-based transactions. Here, we discuss the suggested approaches for creating a reliable and safe environment for a surveillance cloud. When assessing the security of vital locations, surveillance data is crucial. We are implementing machine learning methods to improve cloud security to more precisely classify image pixels, we make use of Support Vector Machines (SVM) and Fuzzy C-means Clustering (FCM). We also extend the conventional two-tiered design by adding a third level, the CloudSec module, to lower the risk of potential disclosure of surveillance data.In our work we  evaluates how well our proposed model (FCM-SVM) performed against contemporary models like ANN, KNN, SVD, and Naive Bayes. Comparing our model to other cutting-edge models, we found that it performed better, with an average accuracy of 94.4%

    A User-Centric Access Control Framework for Cloud Computing

    Get PDF
    A huge amount of data is generated due to the growth of advanced information technology, online availability and easy access to cloud computing. In cloud computing, user can easily store and share their information across the cloud. With the rapid growth of cloud computing, user’s security and privacy has become a serious concern. Despite various existing security mechanisms, enterprises are still afraid of losing their outsourced data and unauthorized access. In most cases, access control mechanism and authorization rule follow a web application. This makes it limited, tightly bound to web application functionality and also doesn’t complete the security requirements for the individual user that results in poor protection against unauthorized access. To overcome the issue of privacy and protection, a suggestion is given in this study to empower the owner of any piece of data and information to protect their resource according to their own semantics. In this thesis, a new approach is presented that externalize access control policy and empower the user to control access on their data according to their semantics and wishes. The proposed framework provides PKI standard base secure access control mechanism and describes the protocol interface between the different components to enforce user-centric access control policy

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    The Elements of Big Data Value

    Get PDF
    This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Cloud privacy and security issues beyond technology: championing the cause of accountability

    Get PDF
    Cloud computing provides IT service providers increased efficiency of resource utilization while enabling consumers to benefit from innovative advantages like access to up-to-date IT resources and low upfront investment. A significant hindrance to adoption of cloud computing is the lack of trust arising from worries over privacy and security when data resources of cloud service consumers are handled by third parties. A key factor in fostering cloud privacy and security is accountability, which increases trust by obligating an entity to be answerable for its actions. This paper uses a hermeneutic literature review to investigate (i) the prevailing methods and strategies of fostering privacy and security through accountability, (ii) the key actors in championing cloud accountability and (iii) the key barriers to cloud accountability. This literature review provides insight into current practices associated with championing cloud accountability and contributes to cloud service provider awareness of ways to improve cloud computing trustworthiness

    DIGITISING AGRIFOOD Pathways and Challenges. November 2019

    Get PDF
    As climate change increasingly poses an existential risk for the Earth, scientists and policymakers turn to agriculture and food as areas for urgent and bold action, which need to return within acceptable Planet Boundaries. The links between agriculture, biodiversity and climate change have become so evident that scientists propose a Great Food Transformation towards a healthy diet by 2050 as a major way to save the planet. Achieving these milestones, however, is not easy, both based on current indicators and on the gloomy state of global dialogue in this domain. This is why digital technologies such as wireless connectivity, the Internet of Things, Arti cial Intelligence and blockchain can and should come to the rescue. This report looks at the many ways in which digital solutions can be implemented on the ground to help the agrifood chain transform itself to achieve more sustainability. Together with the solution, we identify obstacles, challenges, gaps and possible policy recommendations. Action items are addressed at the European Union both as an actor of change at home, and in global governance, and are spread across ten areas, from boosting connectivity and data governance to actions aimed at empowering small farmers and end users

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Contributing to the pathway towards 5G experimentation with an SDN-controlled network box

    Get PDF
    Καθώς η απαίτηση σε ευρυζωνικές υπηρεσίες κινητών επικοινωνιών αυξάνεται ραγδαία, τα υπάρχοντα δίκτυα κινητών επικοινωνιών πλησιάζουν τα όριά τους κάνοντας επιτακτική την ανάγκη εξέλιξής τους η οποία θα επέλθει με την τεχνολογική άφιξη της επόμενης γενιάς κινητών επικοινωνιών, ευρέως γνωστής ως 5G. Το 5G μεταφέρει όλες εκείνες τις δυνατότητες οι οποίες είναι απαραίτητες για να καλυφθούν οι συνεχώς αυξανόμενες ανάγκες σε ευρυζωνικές υπηρεσίες, να υποστηρίξουν το Internet of Things καθώς και να ενοποιήσουν ετερογενείς υπηρεσίες σε διαφορετικές βιομηχανίες. Η παρούσα διπλωματική εργασία στοχεύει να παρουσιάσει το “Network in a box”, ένα καινοτόμο εργαλείο που αναπτύξαμε στο εργαστήριο, το οποίο βασίζεται επάνω στους θεμέλιους λίθους του 5G, το SDN και το NFV. Με το SDN να είναι η νέα προσέγγιση στα δίκτυα κινητών επικοινωνιών, ο έλεγχος διαχωρίζεται από τα δεδομένα παρέχοντας τη δυνατότητα οποιεσδήποτε αποφάσεις ελέγχου, να λαμβάνονται κεντρικά, μετατρέποντας έτσι τις κλασικές δικτυακές συσκευές σε απλά προωθητικά στοιχεία του δικτύου. Η συγκεκριμένη διάταξη μιμείται ένα πραγματικό δίκτυο, το οποίο διαθέτει δυνατότητες αυτο-οργάνωσης και αυτο-βελτίωσης, προσομοιώνοντας τη λειτουργία του 5G δικτύου. Το συγκεκριμένο εργαλείο είναι επίσης ικανό να παράσχει KPI μετρικές του 5G δικτύου κάτω από πραγματικές συνθήκες ενόσω αληθινές δικτυακές συσκευές είναι συνδεδεμένες σε αυτό. Η δομή της παρούσας διπλωματικής εργασίας αναλύεται σε πέντε κεφάλαια. Το πρώτο κεφάλαιο παρουσιάζει τις προκλήσεις που σύντομα θα κληθούν να αντιμετωπίσουν τα δίκτυα κινητών επικοινωνιών και πώς αυτές μπορούν να καλυφθούν με την τεχνολογία του 5G. Το δεύτερο κεφάλαιο εισάγει την τάση στην αγορά των κινητών επικοινωνιών που διαφένεται πίσω από την επερχόμενη άφιξη του 5G, αποκαλύπτοντας το επιχειρηματικό πλαίσιο για επιχειρήσεις, καταναλωτές και συνεργασίες όπως επίσης και κάποιες περιπτώσεις χρήσης που αντικατοπτρίζουν την διαρκή εξέλιξη στις ευρυζωνικές υπηρεσίες κινητών επικοινωνιών. Το τρίτο κεφάλαιο εμπεριέχει μια μικρή επισκόπηση των τρέχοντων έργων πάνω στο 5G, τα οποία ξεκίνησαν υπό την αιγίδα της Ευρωπαϊκής Επιτροπής με τη συνεργασία προμηθευτών τεχνολογίας επικοινωνιών, παρόχων υπηρεσιών, μικρομεσαίων επιχειρήσεων και πανεπιστημίων. Γίνεται επίσης αναφορά στις βασικές τεχνολογίες του 5G και στις δραστηριότητες προτυποποίησής του. Προχωρώντας στο τέταρτο κεφάλαιο, περιγράφουμε σε βάθος την αρχιτεκτονική του 5G δικτύου, αναλύοντας τα SDN, NFV, MANO και εξετάζουμε πώς αυτά συνεισφέρουν στη βιωσιμότητα του δικτύου. Τέλος, στο πέμπτο κεφάλαιο εισάγουμε μια καινοτόμο ιδέα που αναπτύξαμε στο εργαστήριο δικτύων του πανεπιστημίου μας, ένα πλήρως αυτόνομο δικτυακό εργαλείο, το “Network in a box”. Παρουσιάζουμε σε βάθος πώς αυτός ο server μπορεί να εγκατασταθεί και να λειτουργήσει καθώς και τις δυνατότητές του κάτω από πραγματικές συνθήκες λειτουργίας του δικτύου, ενώ λαμβάνουν χώρα υποβάθμιση ποιότητας ή μη-διαθεσιμότητα στις δικτυακές ζεύξεις, παρέχοντας επίσης μετρικές από τη λειτουργία του δικτύου σε πραγματικό χρόνο.As the demand in mobile broadband is tremendously increased and the heterogeneity of the services to be covered is growing rapidly, current mobile networks are close to their limits imposing the need of an evolution which is going to be introduced by the next generation technology, the ITU IMT-2020, well known as 5G. 5G brings all those capabilities required to cover the increased mobile broadband needs, support the Internet of Things and bind heterogeneous services in different industries. This diploma thesis aims at presenting the “Network in a box”, an innovative tool we developed which is based on the key 5G principles, SDN and NFV. With Software Defined Networking (SDN) being the new approach in mobile networks, control and data plane are decoupled providing the ability to make any control related decisions centrally and transform legacy network devices to simple forwarding elements. This testbed is a portable emulated network device which is self-managed and self-optimised and can be connected between any real network devices, emulating how the 5G network will perform. This plug & play black-box testbed is also capable of providing KPI metrics of the 5G network under real circumstances when real network devices are connected to it. The structure of this diploma thesis is decomposed in five chapters. Chapter 1 presents the challenges mobile networks will shortly face due to the growing heterogeneous demands in communications towards the year 2020 and beyond and how these can be met with the upcoming 5G technology. Chapter 2 introduces the market trend behind the new era of 5G, revealing the business context for enterprises, consumers, verticals and partnerships as well as some use cases which reflect the continuous mobile broadband evolution. Chapter 3 includes a short overview of the ongoing 5G projects, initiated under the umbrella of the European Commission, with the collaboration of communications technology vendors, telecommunications operators, service providers, small and medium-sized enterprises (SMEs) and universities. There is also a reference in 5G key enabling technologies and standardisation activities as we move towards the next generation mobile networks technology. Moving forward, chapter 4 describes in detail the technological components of 5G network architecture such as SDN, NFV, MANO and examines how these 5G key enabling technologies contribute to the overall networks’ sustainability. Finally, in chapter 5 we introduce an innovative idea developed in our university’s communications network research laboratory, an autonomous emulated portable network testbed, the “Network in a box”. We present in-depth how this portable server is deployed, operates and demonstrate the way it can be connected to real network elements emulating a real 5G end-to-end customer network. Moreover, in this last chapter we present “Network in a box” capabilities under real network circumstances when link degradations or failures take place, providing also real-time network metrics
    corecore