283 research outputs found

    From wearable towards epidermal computing : soft wearable devices for rich interaction on the skin

    Get PDF
    Human skin provides a large, always available, and easy to access real-estate for interaction. Recent advances in new materials, electronics, and human-computer interaction have led to the emergence of electronic devices that reside directly on the user's skin. These conformal devices, referred to as Epidermal Devices, have mechanical properties compatible with human skin: they are very thin, often thinner than human hair; they elastically deform when the body is moving, and stretch with the user's skin. Firstly, this thesis provides a conceptual understanding of Epidermal Devices in the HCI literature. We compare and contrast them with other technical approaches that enable novel on-skin interactions. Then, through a multi-disciplinary analysis of Epidermal Devices, we identify the design goals and challenges that need to be addressed for advancing this emerging research area in HCI. Following this, our fundamental empirical research investigated how epidermal devices of different rigidity levels affect passive and active tactile perception. Generally, a correlation was found between the device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Based on these findings, we derive design recommendations for realizing epidermal devices. Secondly, this thesis contributes novel Epidermal Devices that enable rich on-body interaction. SkinMarks contributes to the fabrication and design of novel Epidermal Devices that are highly skin-conformal and enable touch, squeeze, and bend sensing with co-located visual output. These devices can be deployed on highly challenging body locations, enabling novel interaction techniques and expanding the design space of on-body interaction. Multi-Touch Skin enables high-resolution multi-touch input on the body. We present the first non-rectangular and high-resolution multi-touch sensor overlays for use on skin and introduce a design tool that generates such sensors in custom shapes and sizes. Empirical results from two technical evaluations confirm that the sensor achieves a high signal-to-noise ratio on the body under various grounding conditions and has a high spatial accuracy even when subjected to strong deformations. Thirdly, Epidermal Devices are in contact with the skin, they offer opportunities for sensing rich physiological signals from the body. To leverage this unique property, this thesis presents rapid fabrication and computational design techniques for realizing Multi-Modal Epidermal Devices that can measure multiple physiological signals from the human body. Devices fabricated through these techniques can measure ECG (Electrocardiogram), EMG (Electromyogram), and EDA (Electro-Dermal Activity). We also contribute a computational design and optimization method based on underlying human anatomical models to create optimized device designs that provide an optimal trade-off between physiological signal acquisition capability and device size. The graphical tool allows for easily specifying design preferences and to visually analyze the generated designs in real-time, enabling designer-in-the-loop optimization. Experimental results show high quantitative agreement between the prediction of the optimizer and experimentally collected physiological data. Finally, taking a multi-disciplinary perspective, we outline the roadmap for future research in this area by highlighting the next important steps, opportunities, and challenges. Taken together, this thesis contributes towards a holistic understanding of Epidermal Devices}: it provides an empirical and conceptual understanding as well as technical insights through contributions in DIY (Do-It-Yourself), rapid fabrication, and computational design techniques.Die menschliche Haut bietet eine große, stets verfügbare und leicht zugängliche Fläche für Interaktion. Jüngste Fortschritte in den Bereichen Materialwissenschaft, Elektronik und Mensch-Computer-Interaktion (Human-Computer-Interaction, HCI) [so that you can later use the Englisch abbreviation] haben zur Entwicklung elektronischer Geräte geführt, die sich direkt auf der Haut des Benutzers befinden. Diese sogenannten Epidermisgeräte haben mechanische Eigenschaften, die mit der menschlichen Haut kompatibel sind: Sie sind sehr dünn, oft dünner als ein menschliches Haar; sie verformen sich elastisch, wenn sich der Körper bewegt, und dehnen sich mit der Haut des Benutzers. Diese Thesis bietet, erstens, ein konzeptionelles Verständnis von Epidermisgeräten in der HCI-Literatur. Wir vergleichen sie mit anderen technischen Ansätzen, die neuartige Interaktionen auf der Haut ermöglichen. Dann identifizieren wir durch eine multidisziplinäre Analyse von Epidermisgeräten die Designziele und Herausforderungen, die angegangen werden müssen, um diesen aufstrebenden Forschungsbereich voranzubringen. Im Anschluss daran untersuchten wir in unserer empirischen Grundlagenforschung, wie epidermale Geräte unterschiedlicher Steifigkeit die passive und aktive taktile Wahrnehmung beeinflussen. Im Allgemeinen wurde eine Korrelation zwischen der Steifigkeit des Geräts und den taktilen Empfindlichkeitsschwellen sowie der Fähigkeit zur Rauheitsunterscheidung festgestellt. Basierend auf diesen Ergebnissen leiten wir Designempfehlungen für die Realisierung epidermaler Geräte ab. Zweitens trägt diese Thesis zu neuartigen Epidermisgeräten bei, die eine reichhaltige Interaktion am Körper ermöglichen. SkinMarks trägt zur Herstellung und zum Design neuartiger Epidermisgeräte bei, die hochgradig an die Haut angepasst sind und Berührungs-, Quetsch- und Biegesensoren mit gleichzeitiger visueller Ausgabe ermöglichen. Diese Geräte können an sehr schwierigen Körperstellen eingesetzt werden, ermöglichen neuartige Interaktionstechniken und erweitern den Designraum für die Interaktion am Körper. Multi-Touch Skin ermöglicht hochauflösende Multi-Touch-Eingaben am Körper. Wir präsentieren die ersten nicht-rechteckigen und hochauflösenden Multi-Touch-Sensor-Overlays zur Verwendung auf der Haut und stellen ein Design-Tool vor, das solche Sensoren in benutzerdefinierten Formen und Größen erzeugt. Empirische Ergebnisse aus zwei technischen Evaluierungen bestätigen, dass der Sensor auf dem Körper unter verschiedenen Bedingungen ein hohes Signal-Rausch-Verhältnis erreicht und eine hohe räumliche Auflösung aufweist, selbst wenn er starken Verformungen ausgesetzt ist. Drittens, da Epidermisgeräte in Kontakt mit der Haut stehen, bieten sie die Möglichkeit, reichhaltige physiologische Signale des Körpers zu erfassen. Um diese einzigartige Eigenschaft zu nutzen, werden in dieser Arbeit Techniken zur schnellen Herstellung und zum computergestützten Design von multimodalen Epidermisgeräten vorgestellt, die mehrere physiologische Signale des menschlichen Körpers messen können. Die mit diesen Techniken hergestellten Geräte können EKG (Elektrokardiogramm), EMG (Elektromyogramm) und EDA (elektrodermale Aktivität) messen. Darüber hinaus stellen wir eine computergestützte Design- und Optimierungsmethode vor, die auf den zugrunde liegenden anatomischen Modellen des Menschen basiert, um optimierte Gerätedesigns zu erstellen. Diese Designs bieten einen optimalen Kompromiss zwischen der Fähigkeit zur Erfassung physiologischer Signale und der Größe des Geräts. Das grafische Tool ermöglicht die einfache Festlegung von Designpräferenzen und die visuelle Analyse der generierten Designs in Echtzeit, was eine Optimierung durch den Designer im laufenden Betrieb ermöglicht. Experimentelle Ergebnisse zeigen eine hohe quantitative Übereinstimmung zwischen den Vorhersagen des Optimierers und den experimentell erfassten physiologischen Daten. Schließlich skizzieren wir aus einer multidisziplinären Perspektive einen Fahrplan für zukünftige Forschung in diesem Bereich, indem wir die nächsten wichtigen Schritte, Möglichkeiten und Herausforderungen hervorheben. Insgesamt trägt diese Arbeit zu einem ganzheitlichen Verständnis von Epidermisgeräten bei: Sie liefert ein empirisches und konzeptionelles Verständnis sowie technische Einblicke durch Beiträge zu DIY (Do-It-Yourself), schneller Fertigung und computergestützten Entwurfstechniken

    Computational interaction techniques for 3D selection, manipulation and navigation in immersive VR

    Get PDF
    3D interaction provides a natural interplay for HCI. Many techniques involving diverse sets of hardware and software components have been proposed, which has generated an explosion of Interaction Techniques (ITes), Interactive Tasks (ITas) and input devices, increasing thus the heterogeneity of tools in 3D User Interfaces (3DUIs). Moreover, most of those techniques are based on general formulations that fail in fully exploiting human capabilities for interaction. This is because while 3D interaction enables naturalness, it also produces complexity and limitations when using 3DUIs. In this thesis, we aim to generate approaches that better exploit the high potential human capabilities for interaction by combining human factors, mathematical formalizations and computational methods. Our approach is focussed on the exploration of the close coupling between specific ITes and ITas while addressing common issues of 3D interactions. We specifically focused on the stages of interaction within Basic Interaction Tasks (BITas) i.e., data input, manipulation, navigation and selection. Common limitations of these tasks are: (1) the complexity of mapping generation for input devices, (2) fatigue in mid-air object manipulation, (3) space constraints in VR navigation; and (4) low accuracy in 3D mid-air selection. Along with two chapters of introduction and background, this thesis presents five main works. Chapter 3 focusses on the design of mid-air gesture mappings based on human tacit knowledge. Chapter 4 presents a solution to address user fatigue in mid-air object manipulation. Chapter 5 is focused on addressing space limitations in VR navigation. Chapter 6 describes an analysis and a correction method to address Drift effects involved in scale-adaptive VR navigation; and Chapter 7 presents a hybrid technique 3D/2D that allows for precise selection of virtual objects in highly dense environments (e.g., point clouds). Finally, we conclude discussing how the contributions obtained from this exploration, provide techniques and guidelines to design more natural 3DUIs

    Diverse Contributions to Implicit Human-Computer Interaction

    Full text link
    Cuando las personas interactúan con los ordenadores, hay mucha información que no se proporciona a propósito. Mediante el estudio de estas interacciones implícitas es posible entender qué características de la interfaz de usuario son beneficiosas (o no), derivando así en implicaciones para el diseño de futuros sistemas interactivos. La principal ventaja de aprovechar datos implícitos del usuario en aplicaciones informáticas es que cualquier interacción con el sistema puede contribuir a mejorar su utilidad. Además, dichos datos eliminan el coste de tener que interrumpir al usuario para que envíe información explícitamente sobre un tema que en principio no tiene por qué guardar relación con la intención de utilizar el sistema. Por el contrario, en ocasiones las interacciones implícitas no proporcionan datos claros y concretos. Por ello, hay que prestar especial atención a la manera de gestionar esta fuente de información. El propósito de esta investigación es doble: 1) aplicar una nueva visión tanto al diseño como al desarrollo de aplicaciones que puedan reaccionar consecuentemente a las interacciones implícitas del usuario, y 2) proporcionar una serie de metodologías para la evaluación de dichos sistemas interactivos. Cinco escenarios sirven para ilustrar la viabilidad y la adecuación del marco de trabajo de la tesis. Resultados empíricos con usuarios reales demuestran que aprovechar la interacción implícita es un medio tanto adecuado como conveniente para mejorar de múltiples maneras los sistemas interactivos.Leiva Torres, LA. (2012). Diverse Contributions to Implicit Human-Computer Interaction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17803Palanci

    Information theory assisted data visualization and exploration

    Get PDF
    This thesis introduces techniques to utilize information theory, particularly entropy for enhancing data visualization and exploration. The ultimate goal with this work is to enable users to perceive as much as information available for recognizing objects, detecting regular or non-regular patterns and reducing user effort while executing the required tasks. We believe that the metrics to be set for enhancing computer generated visualizations should be quantifiable and that quantification should measure the information perception of the user. The proper way to solve this problem is utilizing information theory, particularly entropy. Entropy offers quantification of the information amount in a general communication system. In the communication model, information sender and information receiver are connected with a channel. We are inspired from this model and exploited it in a different way, namely we set the information sender as the data to be visualized, the information receiver as the viewer and the communication channel as the screen where the visualized image is displayed. In this thesis we explore the usage of entropy in three different visualization problems, -Enhancing the visualization of large scale social networks for better perception, -Finding the best representational images of a 3D object to visually inspect with minimal loss of information, -Automatic navigation over a 3D terrain with minimal loss of information. Visualization of large scale social networks is still a major challenge for information visualization researchers. When a thousand nodes are displayed on the screen with the lack of coloring, sizing and filtering mechanisms, the users generally do not perceive much on the first look. They usually use pointing devices or keyboard for zooming and panning to find the information that they are looking for. With this thesis we tried to present a visualization approach that uses coloring, sizing and filtering to help the users recognize the presented information. The second problem that we tried to tackle is finding the best representational images of 3D models. This problem is highly subjective in cognitive manner. The best or good definitions do not depend on any metric or any quantification, furthermore, when the same image is presented to two different users it can be identified differently. However in this thesis we tried to map some metrics to best or good definitions for representational images, such as showing the maximum faces, maximum saliency or combination of both in an image. The third problem that we tried to find a solution is automatic terrain navigation with minimal loss of information. The information to be quantified on this problem is taken as the surface visibility of a terrain. However the visibility problem is changed with the heuristic that users generally focus on city centers, buildings and interesting points during terrain exploration. In order to improve the information amount at the time of navigation, we should focus on those areas. Hence we employed the road network data, and set the heuristic that intersections of road network segments are the residential places. In this problem, region extraction using road network data, viewpoint entropy for camera positions, and automatic camera path generation methods are investigated

    Integrating Usability Models into Pervasive Application Development

    Get PDF
    This thesis describes novel processes in two important areas of human-computer interaction (HCI) and demonstrates ways to combine these in appropriate ways. First, prototyping plays an essential role in the development of complex applications. This is especially true if a user-centred design process is followed. We describe and compare a set of existing toolkits and frameworks that support the development of prototypes in the area of pervasive computing. Based on these observations, we introduce the EIToolkit that allows the quick generation of mobile and pervasive applications, and approaches many issues found in previous works. Its application and use is demonstrated in several projects that base on the architecture and an implementation of the toolkit. Second, we present novel results and extensions in user modelling, specifically for predicting time to completion of tasks. We extended established concepts such as the Keystroke-Level Model to novel types of interaction with mobile devices, e.g. using optical markers and gestures. The design, creation, as well as a validation of this model are presented in some detail in order to show its use and usefulness for making usability predictions. The third part is concerned with the combination of both concepts, i.e. how to integrate user models into the design process of pervasive applications. We first examine current ways of developing and show generic approaches to this problem. This leads to a concrete implementation of such a solution. An innovative integrated development environment is provided that allows for quickly developing mobile applications, supports the automatic generation of user models, and helps in applying these models early in the design process. This can considerably ease the process of model creation and can replace some types of costly user studies.Diese Dissertation beschreibt neuartige Verfahren in zwei wichtigen Bereichen der Mensch-Maschine-Kommunikation und erläutert Wege, diese geeignet zu verknüpfen. Zum einen spielt die Entwicklung von Prototypen insbesondere bei der Verwendung von benutzerzentrierten Entwicklungsverfahren eine besondere Rolle. Es werden daher auf der einen Seite eine ganze Reihe vorhandener Arbeiten vorgestellt und verglichen, die die Entwicklung prototypischer Anwendungen speziell im Bereich des Pervasive Computing unterstützen. Ein eigener Satz an Werkzeugen und Komponenten wird präsentiert, der viele der herausgearbeiteten Nachteile und Probleme solcher existierender Projekte aufgreift und entsprechende Lösungen anbietet. Mehrere Beispiele und eigene Arbeiten werden beschrieben, die auf dieser Architektur basieren und entwickelt wurden. Auf der anderen Seite werden neue Forschungsergebnisse präsentiert, die Erweiterungen von Methoden in der Benutzermodellierung speziell im Bereich der Abschätzung von Interaktionszeiten beinhalten. Mit diesen in der Dissertation entwickelten Erweiterungen können etablierte Konzepte wie das Keystroke-Level Model auf aktuelle und neuartige Interaktionsmöglichkeiten mit mobilen Geräten angewandt werden. Der Entwurf, das Erstellen sowie eine Validierung der Ergebnisse dieser Erweiterungen werden detailliert dargestellt. Ein dritter Teil beschäftigt sich mit Möglichkeiten die beiden beschriebenen Konzepte, zum einen Prototypenentwicklung im Pervasive Computing und zum anderen Benutzermodellierung, geeignet zu kombinieren. Vorhandene Ansätze werden untersucht und generische Integrationsmöglichkeiten beschrieben. Dies führt zu konkreten Implementierungen solcher Lösungen zur Integration in vorhandene Umgebungen, als auch in Form einer eigenen Applikation spezialisiert auf die Entwicklung von Programmen für mobile Geräte. Sie erlaubt das schnelle Erstellen von Prototypen, unterstützt das automatische Erstellen spezialisierter Benutzermodelle und ermöglicht den Einsatz dieser Modelle früh im Entwicklungsprozess. Dies erleichtert die Anwendung solcher Modelle und kann Aufwand und Kosten für entsprechende Benutzerstudien einsparen

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    A usability model for chronic disease management mobile applications

    Get PDF
    The usability issues stand as one of the biggest obstacles to implement Mobile Healthcare Applications technologies. Consequently, the MHealth Apps users become confused in choosing the right apps for them. These applications must comply with the usability measure to ensure they can satisfy and are acceptable, especially chronic disease patients. Current usability evaluation models do not fulfill the usability characteristics and MHealth. These models tend to focus on the web application or general mobile apps. In addition, the evaluation of mHealth for further improvement becomes difficult or inaccurate. Thus, the main objective of this study is to construct a usability evaluation model for the chronic disease mobile application. A mixed methods research design was used in which qualitative data was collected using a systematic literature review to identify the usability characteristic and measures for MHealth. A purposive sampling technique was applied for semi-structured interviews with real users in gathering the usability requirements for the usability evaluation model. The usability characteristics and model development were verified by knowledge and domain experts. Usability testing was conducted with chronic disease patients as respondents, using chronic disease applications selected from an open-source mobile application to validate the implementation feasibility of the proposed model. Findings showed a total of five (5) usability characteristics, twelve (12) sub-characteristic, and forty-two (42) metrics were generated. The model was improvised based on the feedback from experts. This demonstrated the reliability, validity, and applicability of the model as guidelines to developers in developing the mobile healthcare application for chronic disease. This study makes a contribution by providing a usability model for usability practitioners and developers by incorporating new usability factors such as self-management as one of the usability factors for chronic disease. In addition, the model provides detailed guidelines to apply the model in evaluating mobile application to produce usable MHealth applications for patients with chronic diseases

    An investigation into alternative human-computer interaction in relation to ergonomics for gesture interface design

    Get PDF
    Recent, innovative developments in the field of gesture interfaces as input techniques have the potential to provide a basic, lower-cost, point-and-click function for graphic user interfaces (GUIs). Since these gesture interfaces are not yet widely used, indeed no tilt-based gesture interface is currently on the market, there is neither an international standard for the testing procedure nor a guideline for their ergonomic design and development. Hence, the research area demands more design case studies on a practical basis. The purpose of the research is to investigate the design factors of gesture interfaces for the point-andclick task in the desktop computer environment. The key function of gesture interfaces is to transfer the specific body movement into the cursor movement on the two-dimensional graphical user interface(2D GUI) on a real-time basis, based in particular on the arm movement. The initial literature review identified limitations related to the cursor movement behaviour with gesture interfaces. Since the cursor movement is the machine output of the gesture interfaces that need to be designed, a new accuracy measure based on the calculation of the cursor movement distance and an associated model was then proposed in order to validate the continuous cursor movement. Furthermore, a design guideline with detailed design requirements and specifications for the tilt-based gesture interfaces was suggested. In order to collect the human performance data and the cursor movement distance, a graphical measurement platform was designed and validated with the ordinary mouse. Since there are typically two types of gesture interface, i.e. the sweep-based and the tilt-based, and no commercial tilt-based gesture interface has yet been developed, a commercial sweep-based gesture interface, namely the P5 Glove, was studied and the causes and effects of the discrete cursor movement on the usability was investigated. According to the proposed design guideline, two versions of the tilt-based gesture 3 interface were designed and validated based on an iterative design process. Most of the phenomena and results from the trials undertaken, which are inter-related, were analyzed and discussed. The research has contributed new knowledge through design improvement of tilt-based gesture interfaces and the improvement of the discrete cursor movement by elimination of the manual error compensation. This research reveals that there is a relation between the cursor movement behaviour and the adjusted R 2 for the prediction of the movement time across models expanded from Fitts’ Law. In such a situation, the actual working area and the joint ranges are lengthy and appreciably different from those that had been planned. Further studies are suggested. The research was associated with the University Alliance Scheme technically supported by Freescale Semiconductor Co., U.S
    corecore