437 research outputs found

    A Model-Based Approach Towards the Conceptualization of Digital Twins: The Case of the EU-Project COGITO

    Get PDF
    In agile business ecosystems, digitalization is a key enabler for agility and flexibility. However, digital transformation is often challenging for instance due to unclear definitions and a lack of problem understanding. In this work this complexity is addressed with a model-based approach for conceptualizing digitalization and related meta modelling activities to enable the conceptual integration of diverse concepts. Existing modelling approaches – BPMN and ArchiMate – are leveraged with domain specific considerations that are relevant for the digitalization. The construction use case from the European project COGITO serves as a foundation for ideation and first requirements engineering. Physical experiments in the OMiLAB Innovation Environment are used as an experimental method towards identifying relevant digital twinning concepts, while modelling methods can be seen as an integration platform for physical and digital elements. Key digitalization aspects towards digital twinning are discussed and conceptualized in a meta model

    BPM Adoption at Bilfinger

    Get PDF
    Big size corporate companies that opt for Business ProcessManagement (BPM) adoption invest a lot in BPM initiatives with theprimary focus on the identification and standardization of best practicesin the different phases of the BPM lifecycle. The business processes de-signed are usually seen as the standard way of executing the processesand tend not be adapted to specific customers' need or changing condi-tions. Furthermore, the acceptance of a paradigm shift by the end usersis an added challenge. This case introduces a success story on BPMadoption in complex environments where different organizational unitswith different needs are involved. The projects executed in different unitsrespond to specific customers’ requirements, which affects the set of pro-cesses to be designed and executed within them. We developed a novelapproach inspired by the Cynefin framework and used it to define processarchitectures and the respective business process models for a subset ofthe units. To ensure the applicability and acceptance of the new paradigmwe followed a number of well-known methodologies and practices (e.g.SCRUM and gamification). As a result, we managed to move from thetraditional function orientation to BPM orientation taking into consid-eration the flexibility needs, and we received very positive feedback fromour end users

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Aspect-Oriented Business Process Modeling Approaches: An assessment of AOP4ST

    Get PDF
    Aspect-oriented business process modeling (AOBPM) is an emerging discipline which has recently attracted the attention of researchers and professionals. In 2014, Amin Jalali reviewed the state of the art of AOBPM and proposed a framework to assess the available approaches. We have developed AOP4ST, an aspect-oriented process for the software development life cycle, which includes the business process modeling as its first phase, and which follows the Jalali’s recommendations. In this paper, we present the assessment of the AOP4ST’s business modeling capability by comparing it with all of the original proposals assessed by Jalali’s framework. Finally, we present ongoing work for the improvement of our approach on its AOBPM capabilities and its ability to detect and separate concerns at early stages of the development.Sociedad Argentina de Informática e Investigación Operativ

    Aspect-Oriented Business Process Modeling Approaches: An assessment of AOP4ST

    Get PDF
    Aspect-oriented business process modeling (AOBPM) is an emerging discipline which has recently attracted the attention of researchers and professionals. In 2014, Amin Jalali reviewed the state of the art of AOBPM and proposed a framework to assess the available approaches. We have developed AOP4ST, an aspect-oriented process for the software development life cycle, which includes the business process modeling as its first phase, and which follows the Jalali’s recommendations. In this paper, we present the assessment of the AOP4ST’s business modeling capability by comparing it with all of the original proposals assessed by Jalali’s framework. Finally, we present ongoing work for the improvement of our approach on its AOBPM capabilities and its ability to detect and separate concerns at early stages of the development.Sociedad Argentina de Informática e Investigación Operativ

    A taxonomy for key performance indicators management

    Get PDF
    In recent years, research on Key Performance Indicators (KPIs) management has grown exponentially, giving rise to a multitude of heterogeneous approaches addressing any aspect concerning it. In this paper, we plot the landscape of published works related with KPIs management, organizing and synthesizing them by means of a unified taxonomy that encompasses the aspects considered by other proposals, and it captures the overall characteristics of KPIs. Since most of the literature centers on the definition of KPIs, we mainly focus on such an aspect of KPIs management. Our work is intended to provide remarkable benefits such as enhancing the understanding of KPIs management, or helping users decide about the most suitable solution for their requirements

    Quality of process modeling using BPMN: a model-driven approach

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaContext: The BPMN 2.0 specification contains the rules regarding the correct usage of the language’s constructs. Practitioners have also proposed best-practices for producing better BPMN models. However, those rules are expressed in natural language, yielding sometimes ambiguous interpretation, and therefore, flaws in produced BPMN models. Objective: Ensuring the correctness of BPMN models is critical for the automation of processes. Hence, errors in the BPMN models specification should be detected and corrected at design time, since faults detected at latter stages of processes’ development can be more costly and hard to correct. So, we need to assess the quality of BPMN models in a rigorous and systematic way. Method: We follow a model-driven approach for formalization and empirical validation of BPMN well-formedness rules and BPMN measures for enhancing the quality of BPMN models. Results: The rule mining of BPMN specification, as well as recently published BPMN works, allowed the gathering of more than a hundred of BPMN well-formedness and best-practices rules. Furthermore, we derived a set of BPMN measures aiming to provide information to process modelers regarding the correctness of BPMN models. Both BPMN rules, as well as BPMN measures were empirically validated through samples of BPMN models. Limitations: This work does not cover control-flow formal properties in BPMN models, since they were extensively discussed in other process modeling research works. Conclusion: We intend to contribute for improving BPMN modeling tools, through the formalization of well-formedness rules and BPMN measures to be incorporated in those tools, in order to enhance the quality of process modeling outcomes

    Tackling Dierent Business Process Perspectives

    Get PDF
    Business Process Management (BPM) has emerged as a discipline to design, control, analyze, and optimize business operations. Conceptual models lie at the core of BPM. In particular, business process models have been taken up by organizations as a means to describe the main activities that are performed to achieve a specific business goal. Process models generally cover different perspectives that underlie separate yet interrelated representations for analyzing and presenting process information. Being primarily driven by process improvement objectives, traditional business process modeling languages focus on capturing the control flow perspective of business processes, that is, the temporal and logical coordination of activities. Such approaches are usually characterized as \u201cactivity-centric\u201d. Nowadays, activity-centric process modeling languages, such as the Business Process Model and Notation (BPMN) standard, are still the most used in practice and benefit from industrial tool support. Nevertheless, evidence shows that such process modeling languages still lack of support for modeling non-control-flow perspectives, such as the temporal, informational, and decision perspectives, among others. This thesis centres on the BPMN standard and addresses the modeling the temporal, informational, and decision perspectives of process models, with particular attention to processes enacted in healthcare domains. Despite being partially interrelated, the main contributions of this thesis may be partitioned according to the modeling perspective they concern. The temporal perspective deals with the specification, management, and formal verification of temporal constraints. In this thesis, we address the specification and run-time management of temporal constraints in BPMN, by taking advantage of process modularity and of event handling mechanisms included in the standard. Then, we propose three different mappings from BPMN to formal models, to validate the behavior of the proposed process models and to check whether they are dynamically controllable. The informational perspective represents the information entities consumed, produced or manipulated by a process. This thesis focuses on the conceptual connection between processes and data, borrowing concepts from the database domain to enable the representation of which part of a database schema is accessed by a certain process activity. This novel conceptual view is then employed to detect potential data inconsistencies arising when the same data are accessed erroneously by different process activities. The decision perspective encompasses the modeling of the decision-making related to a process, considering where decisions are made in the process and how decision outcomes affect process execution. In this thesis, we investigate the use of the Decision Model and Notation (DMN) standard in conjunction with BPMN starting from a pattern-based approach to ease the derivation of DMN decision models from the data represented in BPMN processes. Besides, we propose a methodology that focuses on the integrated use of BPMN and DMN for modeling decision-intensive care pathways in a real-world application domain

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling
    corecore