106 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    An estimation of distribution algorithm for lot-streaming flow shop problems with setup times

    Full text link
    Lot-streaming flow shops have important applications in different industries including textile, plastic, chemical, semiconductor and many others. This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling and noidling production cases. The objective is to minimize the maximum completion time or makespan. To solve this important practical problem, a novel estimation of distribution algorithm (EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient initialization scheme based on the NEH heuristic is presented to construct an initial population with a certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the algorithm search towards good solutions by taking into account both job permutation and similar blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a speed-up method is presented to reduce the computational effort needed for the local search technique and the NEH-based heuristics. A comparative evaluation is carried out with the best performing algorithms from the literature. The results show that the proposed EDA is very effective in comparison after comprehensive computational and statistical analyses.This research is partially supported by the National Science Foundation of China (60874075, 70871065), and Science Foundation of Shandong Province in China under Grant BS2010DX005, and Postdoctoral Science Foundation of China under Grant 20100480897. Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI and by the IMPIVA-Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175.Pan, Q.; Ruiz García, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega. 40(2):166-180. https://doi.org/10.1016/j.omega.2011.05.002S16618040

    Makespan Minimization in Re-entrant Permutation Flow Shops

    Get PDF
    Re-entrant permutation flow shop problems occur in practical applications such as wafer manufacturing, paint shops, mold and die processes and textile industry. A re-entrant material flow means that the production jobs need to visit at least one working station multiple times. A comprehensive review gives an overview of the literature on re-entrant scheduling. The influence of missing operations received just little attention so far and splitting the jobs into sublots was not examined in re-entrant permutation flow shops before. The computational complexity of makespan minimization in re-entrant permutation flow shop problems requires heuristic solution approaches for large problem sizes. The problem provides promising structural properties for the application of a variable neighborhood search because of the repeated processing of jobs on several machines. Furthermore the different characteristics of lot streaming and their impact on the makespan of a schedule are examined in this thesis and the heuristic solution methods are adjusted to manage the problem’s extension

    Modelling and Scheduling Lot Streaming Flexible Flow Lines

    Get PDF
    Although lot streaming scheduling is an active research field, lot streaming flexible flow lines problems have received far less attention than classical flow shops. This paper deals with scheduling jobs in lot streaming flexible flow line problems. The paper mathematically formulates the problem by a mixed integer linear programming model. This model solves small instances to optimality. Moreover, a novel artificial bee colony optimization is developed. This algorithm utilizes five effective mechanisms to solve the problem. To evaluate the algorithm, it is compared with adaptation of four available algorithms. The statistical analyses showed that the proposed algorithm significantly outperformed the other tested algorithms

    Comparative Analysis of Metaheuristic Approaches for Makespan Minimization for No Wait Flow Shop Scheduling Problem

    Get PDF
    This paper provides comparative analysis of various metaheuristic approaches for m-machine no wait flow shop scheduling (NWFSS) problem with makespan as an optimality criterion. NWFSS problem is NP hard and brute force method unable to find the solutions so approximate solutions are found with metaheuristic algorithms. The objective is to find out the scheduling sequence of jobs to minimize total completion time. In order to meet the objective criterion, existing metaheuristic techniques viz. Tabu Search (TS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are implemented for small and large sized problems and effectiveness of these techniques are measured with statistical metric

    A review of lot streaming in a flow shop environment with makespan criteria

    Get PDF
    [EN] Purpose: This paper reviews current literature and contributes a set of findings that capture the current state-of-the-art of the topic of lot streaming in a flow-shop. Design/methodology/approach: A literature review to capture, classify and summarize the main body of knowledge on lot streaming in a flow-shop with makespan criteria and, translate this into a form that is readily accessible to researchers and practitioners in the more mainstream production scheduling community. Findings: The existing knowledge base is somewhat fragmented. This is a relatively unexplored topic within mainstream operations management research and one which could provide rich opportunities for further exploration. Originality/value: This paper sets out to review current literature, from an advanced production scheduling perspective, and contributes a set of findings that capture the current state-of-the-art of this topic.This work has been carried out as part of the project “Programación de la Producción con Partición Ajustable de Lotes en entornos de Planificación mixta Pedido/Stock (PP-PAL-PPS)”, ref. GVA/2013/034 funded by Consellería de Educación, Cultura y Deportes de la Generalitat Valenciana.Gómez-Gasquet, P.; Segura Andrés, R.; Andrés Romano, C. (2013). A review of lot streaming in a flow shop environment with makespan criteria. Journal of Industrial Engineering and Management. 6(3):761-770. https://doi.org/10.3926/jiem.553S7617706

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    Native metaheuristics for non-permutation flowshop scheduling

    Get PDF
    The most general flowshop scheduling problem is also addressed in the literature as non-permutation flowshop (NPFS). Current processors are able to cope with the combinatorial complexity of (n!)exp m. NPFS scheduling by metaheuristics. After briefly discussing the requirements for a manufacturing layout to be designed and modeled as non-permutation flowshop, a disjunctive graph (digraph) approach is used to build native solutions. The implementation of an Ant Colony Optimization (ACO) algorithm has been described in detail; it has been shown how the biologically inspired mechanisms produce eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions. ACO algorithms are an example of native non-permutation (NNP) solutions of the flowshop scheduling problem, opening a new perspective on building purely native approaches. The proposed NNP-ACO has been assessed over existing native approaches improving most makespan upper bounds of the benchmark problems from Demirkol et al. (1998)

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Integrating Capacitated Lot-Sizing and Lot Streaming in Flowshop Schedules with Time Varying Demand

    Get PDF
    Any reasonable production planning contains three important decisions on lot size, lead time, and capacity. The common approach in the literature is to divide the planning problem into lot sizing, lot sequencing, and lot splitting sub-problems. Very few studies, to the best of our knowledge, have been conducted on the interdependencies and three- way interaction of lead-time, lot size, and actual capacity usage. A particular lot size calculated by the sub-problem method, however, will likely yield an infeasible solution or at least result in schedule instability (nervousness). This is just because in most capacitated lot sizing models, the capacity constraints in the model only take into consideration the available time on each work station, ignoring the sequencing of lots, sublot sizes, and their effect on makespan and lead times. In this thesis we bridge the gap between lot sizing and scheduling in flowshops, and examine the use of the lot splitting and sequencing techniques to reduce schedule instability. A mixed integer programming formulation is presented, which enables us to simultaneously find the optimal lot sizes as well as the corresponding sublot sizes and sequence of jobs. With this model, small size problems can be solved within a reasonable time. The computational results confirm that this model can be advantageous in dampening the scheduling nervousness. For larger size instances, a Genetic algorithm is proposed
    corecore