11 research outputs found

    Topology dependence of PPM-based Internet Protocol traceback schemes

    Get PDF
    Multiple schemes that utilize probabilistic packet marking (PPM) have been proposed to deal with Distributed Denial of Service (DDoS) attacks by reconstructing their attack graphs and identifying the attack sources. In the first part of this dissertation, we present our contribution to the family of PPM-based schemes for Internet Protocol (IP) traceback. Our proposed approach, Prediction-Based Scheme (PBS), consists of marking and traceback algorithms that reduce scheme convergence times by dealing with the problems of data loss and incomplete attack graphs exhibited by previous PPM-based schemes. Compared to previous PPM-based schemes, the PBS marking algorithm ensures that traceback is possible with about 54% as many total network packets, while the traceback algorithm takes about 33% as many marked packets for complete attack path construction. In the second part of this dissertation, we tackle the problem of scheme evaluation and comparison across discrepant network topologies. Previous research in this area has overlooked the influence of network topology on scheme performance and often utilized disparate and simplistic network abstractions to evaluate and compare these schemes. Our approach to this problem involves the evaluation of selected PPM-based schemes across a set of 60 Internet-like topologies and the adaptation of the network motif approach to provide a common ground for comparing the schemes\u27 performances in different network topologies. This approach allows us to determine the level of structural similarity between network topologies and consequently enables the comparison of scheme performance even when the schemes are implemented on different topologies. Furthermore, we identify three network-dependent factors that affect different PPM-based schemes uniquely causing a variation in, and discrepancy between, scheme performance from one network to another. Results indicate that scheme performance is dependent on the network upon which it is implemented, i.e. the value of the PPM-based schemes\u27 convergence times and their rankings vary depending on the underlying network topology. We show how the identified network factors contribute, individually and collectively, to the scheme performance in large-scale networks. Additionally, we identify five superfamilies from the 60 considered networks and find that networks within a superfamily also exhibit similar PPM-based scheme performance. To complement our results, we present an analytical model showing a link between scheme performance in any superfamily, and the motifs exhibited by the networks in that superfamily. Our work highlights a need for multiple network evaluation of network protocols. To this end, we demonstrate a method of identifying structurally similar network topologies among which protocol performance is potentially comparable. Our work also presents an effective way of comparing general network protocol performance in which the protocol is evaluated on specific representative networks instead of an entire set of networks

    Unified Defense against DDoS Attacks

    Get PDF
    Abstract. With DoS/DDoS attacks emerging as one of the primary security threats in today's Internet, the search is on for an efficient DDoS defense mechanism that would provide attack prevention, mitigation and traceback features, in as few packets as possible and with no collateral damage. Although several techniques have been proposed to tackle this growing menace, there exists no effective solution to date, due to the growing sophistication of the attacks and also the increasingly complex Internet architecture. In this paper, we propose an unified framework that integrates traceback and mitigation capabilities for an effective attack defense. Some significant aspects of our approach include: (1) a novel data cube model to represent the traceback information, and its slicing along the lines of path signatures rather than router signatures, (2) characterizing traceback as a transmission scheduling problem on the data cube representation, and achieving scheduling optimality using a novel metric called utility, (3) and finally an information delivery architecture employing both packet marking and data logging in a distributed manner to achieve faster response times. The proposed scheme can thus provide both per-packet mitigation and multi-packet traceback capabilities due to effective data slicing of the cube, and can attain higher detection speeds due to novel utility rate analysis. We also contrast this unified scheme with other well-known schemes in literature to understand the performance tradeoffs, while providing an experimental evaluation of the proposed scheme on real data sets

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    Forensics Tracking for IP User using the Markov Chain Model

    Full text link

    Taking Back the Internet: Defeating DDoS and Adverse Network Conditions via Reactive BGP Routing

    Get PDF
    In this work, we present Nyx, a system for mitigating Distributed Denial of Service (DDoS) attacks by routing critical traffic from known benign networks around links under attack from a massively distributed botnet. Nyx alters how Autonomous Systems (ASes) handle route selection and advertisement in the Border Gateway Protocol (BGP) in order to achieve isolation of critical traffic away from congested links onto alternative, less congested paths. Our system controls outbound paths through the normal process of BGP path selection, while return paths from critical ASes are controlled through the use of existing traffic engineering techniques. To prevent alternative paths from including attacked network links, Nyx employs strategic lying in a manner that is functional in the presence of RPKI. Our system only exposes the alternate path to the networks needed for forwarding and those networks\u27 customer cones, thus strategically reducing the number of ASes outside of the critical AS that receive the alternative path. By leaving the path taken by malicious traffic unchanged and limiting the amount of added traffic load placed on the alternate path, our system causes less than 10 ASes on average to be disturbed by our inbound traffic migration.Nyx is the first system that scalably and effectively mitigates transit-link DDoS attacks that cannot be handled by existing and costly traffic filtering or prioritization techniques. Unlike the prior state of the art, Nyx is highly deployable, requiring only minor changes to router policies at the deployer, and requires no assistance from external networks. Using our own Internet-scale simulator, we find that in more than 98% of cases our system can successfully migrate critical traffic off of the network segments under transit-link DDoS. In over 98% of cases, the alternate path provides some degree of relief over the original path. Finally, in over 70% of cases where Nyx can migrate critical traffic off attacked segments, the new path has sufficient capacity to handle the entire traffic load without congestion

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Leveraging Conventional Internet Routing Protocol Behavior to Defeat DDoS and Adverse Networking Conditions

    Get PDF
    The Internet is a cornerstone of modern society. Yet increasingly devastating attacks against the Internet threaten to undermine the Internet\u27s success at connecting the unconnected. Of all the adversarial campaigns waged against the Internet and the organizations that rely on it, distributed denial of service, or DDoS, tops the list of the most volatile attacks. In recent years, DDoS attacks have been responsible for large swaths of the Internet blacking out, while other attacks have completely overwhelmed key Internet services and websites. Core to the Internet\u27s functionality is the way in which traffic on the Internet gets from one destination to another. The set of rules, or protocol, that defines the way traffic travels the Internet is known as the Border Gateway Protocol, or BGP, the de facto routing protocol on the Internet. Advanced adversaries often target the most used portions of the Internet by flooding the routes benign traffic takes with malicious traffic designed to cause widespread traffic loss to targeted end users and regions. This dissertation focuses on examining the following thesis statement. Rather than seek to redefine the way the Internet works to combat advanced DDoS attacks, we can leverage conventional Internet routing behavior to mitigate modern distributed denial of service attacks. The research in this work breaks down into a single arc with three independent, but connected thrusts, which demonstrate that the aforementioned thesis is possible, practical, and useful. The first thrust demonstrates that this thesis is possible by building and evaluating Nyx, a system that can protect Internet networks from DDoS using BGP, without an Internet redesign and without cooperation from other networks. This work reveals that Nyx is effective in simulation for protecting Internet networks and end users from the impact of devastating DDoS. The second thrust examines the real-world practicality of Nyx, as well as other systems which rely on real-world BGP behavior. Through a comprehensive set of real-world Internet routing experiments, this second thrust confirms that Nyx works effectively in practice beyond simulation as well as revealing novel insights about the effectiveness of other Internet security defensive and offensive systems. We then follow these experiments by re-evaluating Nyx under the real-world routing constraints we discovered. The third thrust explores the usefulness of Nyx for mitigating DDoS against a crucial industry sector, power generation, by exposing the latent vulnerability of the U.S. power grid to DDoS and how a system such as Nyx can protect electric power utilities. This final thrust finds that the current set of exposed U.S. power facilities are widely vulnerable to DDoS that could induce blackouts, and that Nyx can be leveraged to reduce the impact of these targeted DDoS attacks

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore