124 research outputs found

    Tabling with Sound Answer Subsumption

    Get PDF
    Tabling is a powerful resolution mechanism for logic programs that captures their least fixed point semantics more faithfully than plain Prolog. In many tabling applications, we are not interested in the set of all answers to a goal, but only require an aggregation of those answers. Several works have studied efficient techniques, such as lattice-based answer subsumption and mode-directed tabling, to do so for various forms of aggregation. While much attention has been paid to expressivity and efficient implementation of the different approaches, soundness has not been considered. This paper shows that the different implementations indeed fail to produce least fixed points for some programs. As a remedy, we provide a formal framework that generalises the existing approaches and we establish a soundness criterion that explains for which programs the approach is sound. This article is under consideration for acceptance in TPLP.Comment: Paper presented at the 32nd International Conference on Logic Programming (ICLP 2016), New York City, USA, 16-21 October 2016, 15 pages, LaTeX, 0 PDF figure

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    Tabling and Answer Subsumption for Reasoning on Logic Programs with Annotated Disjunctions

    Get PDF
    Abstract Probabilistic Logic Programming is an active field of research, with many proposals for languages, semantics and reasoning algorithms. One such proposal, Logic Programming with Annotated Disjunctions (LPADs) represents probabilistic information in a sound and simple way. This paper presents the algorithm "Probabilistic Inference with Tabling and Answer subsumption" (PITA) for computing the probability of queries. Answer subsumption is a feature of tabling that allows the combination of different answers for the same subgoal in the case in which a partial order can be defined over them. We have applied it in our case since probabilistic explanations (stored as BDDs in PITA) possess a natural lattice structure. PITA has been implemented in XSB and compared with ProbLog, cplint and CVE. The results show that, in almost all cases, PITA is able to solve larger problems and is faster than competing algorithms

    The Functional Perspective on Advanced Logic Programming

    Get PDF
    The basics of logic programming, as embodied by Prolog, are generally well-known in the programming language community. However, more advanced techniques, such as tabling, answer subsumption and probabilistic logic programming fail to attract the attention of a larger audience. The cause for the community\u27s seemingly limited interest lies with the presentation of these features: the literature frequently focuses on implementations and examples that do little to aid the understanding of non-experts in the field. The key point is that many of these advanced logic programming features can be characterised in more generally known, more accessible terms. In my research I try to reconcile these advanced concepts from logic programming (Tabling, Answer subsumption and probabilistic programming) with concepts from functional programming (effects, monads and applicative functors)

    Probabilistic inference in SWI-Prolog

    Get PDF
    Probabilistic Logic Programming (PLP) emerged as one of the most prominent approaches to cope with real-world domains. The distribution semantics is one of most used in PLP, as it is followed by many languages, such as Independent Choice Logic, PRISM, pD, Logic Programs with Annotated Disjunctions (LPADs) and ProbLog. A possible system that allows performing inference on LPADs is PITA, which transforms the input LPAD into a Prolog program containing calls to library predicates for handling Binary Decision Diagrams (BDDs). In particular, BDDs are used to compactly encode explanations for goals and efficiently compute their probability. However, PITA needs mode-directed tabling (also called tabling with answer subsumption), which has been implemented in SWI-Prolog only recently. This paper shows how SWI-Prolog has been extended to include correct answer subsumption and how the PITA transformation has been changed to use SWI-Prolog implementation

    Simulation Subsumption or Déjà vu on the Web

    Get PDF
    Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive rule-based web languages such as the XML and RDF query language Xcerpt. This paper first motivates and formalizes simulation subsumption. Then, it establishes decidability of simulation subsumption for advanced query patterns featuring descendant constructs, regular expressions, negative subterms (or subterm exclusions), and multiple variable occurrences. Finally, we show that subsumption between two query terms can be decided in O(n!n) where n is the sum of the sizes of both query terms
    • …
    corecore