449,633 research outputs found

    A COMPUTATIONAL TOOL TO EVALUATE THE SAMPLE SIZE IN MAP POSITIONAL ACCURACY

    Get PDF
    In many countries, the positional accuracy control by points in Cartography or Spatial data corresponds to the comparison between sets of coordinates of well-defined points in relation to the same set of points from a more accurate source. Usually, each country determines a maximum number of points which could present error values above a pre-established threshold. In many cases, the standards define the sample size as 20 points, with no more consideration, and fix this threshold in 10% of the sample. However, the sampling dimension (n), considering the statistical risk, especially when the percentages of outliers are around 10%, can lead to a producer risk (to reject a good map) and a user risk (to accept a bad map). This article analyzes this issue and allows defining the sampling dimension considering the risk of the producer and of the user. As a tool, a program developed by us allows defining the sample size according to the risk that the producer / user can or wants to assume. This analysis uses 600 control points, each of them with a known error. We performed the simulations with a sample size of 20 points (n) and calculate the associated risk. Then we changed the value of (n), using smaller and larger sizes, calculating for each situation the associated risk both for the user and for the producer. The computer program developed draws the operational curves or risk curves, which considers three parameters: the number of control points; the number of iterations to create the curves; and the percentage of control points above the threshold, that can be the Brazilian standard or other parameters from different countries. Several graphs and tables are presented which were created with different parameters, leading to a better decision both for the user and for the producer, as well as to open possibilities for other simulations and researches in the future

    The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC

    Full text link
    SweetSpot is a three-year National Optical Astronomy Observatory (NOAO) Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. We here present data from the first half of this survey, covering the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74 SNe Ia observed in the rest-frame near-infrared (NIR) from 0.02<z<0.090.02 < z < 0.09. Because many observed supernovae require host galaxy subtraction from templates taken in later semesters, this release contains only the 186 NIR (JHKsJHK_s) data points for the 33 SNe Ia that do not require host-galaxy subtraction. The sample includes 4 objects with coverage beginning before the epoch of B-band maximum and 27 beginning within 20 days of B-band maximum. We also provide photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey (2MASS) systems along with light curves for 786 2MASS stars observed alongside the SNe Ia. This work is the first in a planned series of three SweetSpot Data Releases. Future releases will include the full set of images from all 3 years of the survey, including host-galaxy reference images and updated data processing and host-galaxy reference subtraction. SweetSpot will provide a well-calibrated sample that will help improve our ability to standardize distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of SNe Ia at different epochs, explore nature of dust in other galaxies, and act as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as a figureset and available in source tarball. Data online at http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data

    Diversity of Decline-Rate-Corrected Type Ia Supernova Rise Times: One Mode or Two?

    Get PDF
    B-band light-curve rise times for eight unusually well-observed nearby Type Ia supernovae (SNe) are fitted by a newly developed template-building algorithm, using light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. From the available literature, photometric BVRI data collected over many months, including the earliest points, are reconciled, combined, and fitted to a unique time of explosion for each SN. On average, after they are corrected for light-curve decline rate, three SNe rise in 18.81 +- 0.36 days, while five SNe rise in 16.64 +- 0.21 days. If all eight SNe are sampled from a single parent population (a hypothesis not favored by statistical tests), the rms intrinsic scatter of the decline-rate-corrected SN rise time is 0.96 +0.52 -0.25 days -- a first measurement of this dispersion. The corresponding global mean rise time is 17.44 +- 0.39 days, where the uncertainty is dominated by intrinsic variance. This value is ~2 days shorter than two published averages that nominally are twice as precise, though also based on small samples. When comparing high-z to low-z SN luminosities for determining cosmological parameters, bias can be introduced by use of a light-curve template with an unrealistic rise time. If the period over which light curves are sampled depends on z in a manner typical of current search and measurement strategies, a two-day discrepancy in template rise time can bias the luminosity comparison by ~0.03 magnitudes.Comment: As accepted by The Astrophysical Journal; 15 pages, 6 figures, 2 tables. Explanatory material rearranged and enhanced; Fig. 4 reformatte

    Kummer Covers with Many Points

    Get PDF
    We give a method for constructing Kummer covers with many points over finite fields.Comment: Plain Tex, 13 page

    Counting curves over finite fields

    Full text link
    This is a survey on recent results on counting of curves over finite fields. It reviews various results on the maximum number of points on a curve of genus g over a finite field of cardinality q, but the main emphasis is on results on the Euler characteristic of the cohomology of local systems on moduli spaces of curves of low genus and its implications for modular forms.Comment: 25 pages, to appear in Finite Fields and their Application
    corecore