84 research outputs found

    Intuitionistic Layered Graph Logic: Semantics and Proof Theory

    Get PDF
    Models of complex systems are widely used in the physical and social sciences, and the concept of layering, typically building upon graph-theoretic structure, is a common feature. We describe an intuitionistic substructural logic called ILGL that gives an account of layering. The logic is a bunched system, combining the usual intuitionistic connectives, together with a non-commutative, non-associative conjunction (used to capture layering) and its associated implications. We give soundness and completeness theorems for a labelled tableaux system with respect to a Kripke semantics on graphs. We then give an equivalent relational semantics, itself proven equivalent to an algebraic semantics via a representation theorem. We utilise this result in two ways. First, we prove decidability of the logic by showing the finite embeddability property holds for the algebraic semantics. Second, we prove a Stone-type duality theorem for the logic. By introducing the notions of ILGL hyperdoctrine and indexed layered frame we are able to extend this result to a predicate version of the logic and prove soundness and completeness theorems for an extension of the layered graph semantics . We indicate the utility of predicate ILGL with a resource-labelled bigraph model

    Bunched logics: a uniform approach

    Get PDF
    Bunched logics have found themselves to be key tools in modern computer science, in particular through the industrial-level program verification formalism Separation Logic. Despite this—and in contrast to adjacent families of logics like modal and substructural logic—there is a lack of uniform methodology in their study, leaving many evident variants uninvestigated and many open problems unresolved. In this thesis we investigate the family of bunched logics—including previously unexplored intuitionistic variants—through two uniform frameworks. The first is a system of duality theorems that relate the algebraic and Kripke-style interpretations of the logics; the second, a modular framework of tableaux calculi that are sound and complete for both the core logics themselves, as well as many classes of bunched logic model important for applications in program verification and systems modelling. In doing so we are able to resolve a number of open problems in the literature, including soundness and completeness theorems for intuitionistic variants of bunched logics, classes of Separation Logic models and layered graph models; decidability of layered graph logics; a characterisation theorem for the classes of bunched logic model definable by bunched logic formulae; and the failure of Craig interpolation for principal bunched logics. We also extend our duality theorems to the categorical structures suitable for interpreting predicate versions of the logics, in particular hyperdoctrinal structures used frequently in Separation Logic

    Unified classical logic completeness: a coinductive pearl

    Get PDF
    Codatatypes are absent from many programming languages and proof assistants. We make a case for their importance by revisiting a classic result: the completeness theorem for first-order logic established through a Gentzen system. The core of the proof establishes an abstract property of possibly infinite derivation trees, independently of the concrete syntax or inference rules. This separation of concerns simplifies the presentation. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems as well as various flavors of first order logic. The corresponding Isabelle/HOL formalization demonstrates the recently introduced support for codatatypes and the Haskell code generator

    Unified classical logic completeness: a coinductive pearl

    Get PDF
    Codatatypes are absent from many programming languages and proof assistants. We make a case for their importance by revisiting a classic result: the completeness theorem for first-order logic established through a Gentzen system. The core of the proof establishes an abstract property of possibly infinite derivation trees, independently of the concrete syntax or inference rules. This separation of concerns simplifies the presentation. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems as well as various flavors of first order logic. The corresponding Isabelle/HOL formalization demonstrates the recently introduced support for codatatypes and the Haskell code generator

    Generalizing Rules via Algebraic Constraints (Extended Abstract)

    Get PDF

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Defining Logical Systems via Algebraic Constraints on Proofs

    Full text link
    We comprehensively present a program of decomposition of proof systems for non-classical logics into proof systems for other logics, especially classical logic, using an algebra of constraints. That is, one recovers a proof system for a target logic by enriching a proof system for another, typically simpler, logic with an algebra of constraints that act as correctness conditions on the latter to capture the former; for example, one may use Boolean algebra to give constraints in a sequent calculus for classical propositional logic to produce a sequent calculus for intuitionistic propositional logic. The idea behind such forms of reduction is to obtain a tool for uniform and modular treatment of proof theory and provide a bridge between semantics logics and their proof theory. The article discusses the theoretical background of the project and provides several illustrations of its work in the field of intuitionistic and modal logics. The results include the following: a uniform treatment of modular and cut-free proof systems for a large class of propositional logics; a general criterion for a novel approach to soundness and completeness of a logic with respect to a model-theoretic semantics; and a case study deriving a model-theoretic semantics from a proof-theoretic specification of a logic.Comment: submitte

    Semantic cut elimination for the logic of bunched implications, formalized in Coq

    Get PDF
    The logic of bunched implications (BI) is a substructural logic that forms the backbone of separation logic, the much studied logic for reasoning about heap-manipulating programs. Although the proof theory and metatheory of BI are mathematically involved, the formalization of important metatheoretical results is still incipient. In this paper we present a self-contained formalized, in the Coq proof assistant, proof of a central metatheoretical property of BI: cut elimination for its sequent calculus. The presented proof is *semantic*, in the sense that is obtained by interpreting sequents in a particular "universal" model. This results in a more modular and elegant proof than a standard Gentzen-style cut elimination argument, which can be subtle and error-prone in manual proofs for BI. In particular, our semantic approach avoids unnecessary inversions on proof derivations, or the uses of cut reductions and the multi-cut rule. Besides modular, our approach is also robust: we demonstrate how our method scales, with minor modifications, to (i) an extension of BI with an arbitrary set of \emph{simple structural rules}, and (ii) an extension with an S4-like â–ˇ\Box modality.Comment: 15 pages, to appear in CPP 202

    Soundness and completeness proofs by coinductive methods

    Get PDF
    We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL’s new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion
    • …
    corecore