459 research outputs found

    Variations on a Theme: A Bibliography on Approaches to Theorem Proving Inspired From Satchmo

    Get PDF
    This articles is a structured bibliography on theorem provers, approaches to theorem proving, and theorem proving applications inspired from Satchmo, the model generation theorem prover developed in the mid 80es of the 20th century at ECRC, the European Computer- Industry Research Centre. Note that the bibliography given in this article is not exhaustive

    Implementing semantic tableaux

    Get PDF
    This report describes implementions of the tableau calculus for first-order logic. First an extremely simple implementation, called leanTAP, is presented, which nonetheless covers the full functionality of the calculus and is also competitive with respect to performance. A second approach uses compilation techniques for proof search. Improvements inculding universal variables and lemmata are considered as well as more efficient data structures using reduced ordered binary decision diagrams. The implementation language is PROLOG. In all cases fully operational PROLOG code is given. For leanTAP a formal proof of the correctness of the implementation is given relying on the operational semantics of PROLOG as given by the SLD-tree model. This report will appear as a chapter in the Handbook of Tableau-based Methods in Automated Deduction edited by: D. Gabbay, M. D\u27Agostino, R. H\"{a}hnle, and J.Posegga published by: KLUWER ACADEMIC PUBLISHERS Electronic availability will be discontinued after final acceptance for publication is obtained

    Satisfiability Calculus: An Abstract Formulation of Semantic Proof Systems

    Get PDF
    The theory of institutions, introduced by Goguen and Burstall in 1984, can be thought of as an abstract formulation of model theory. This theory has been shown to be particularly useful in computer science, as a mathematical foundation for formal approaches to software construction. Institution theory was extended by a number of researchers, José Meseguer among them, who, in 1989, presented General Logics, wherein the model theoretical view of institutions is complemented by providing (categorical) structures supporting the proof theory of any given logic. In other words, Meseguer introduced the notion of proof calculus as a formalisation of syntactical deduction, thus ?implementing? the entailment relation of a given logic. In this paper we follow the approach initiated by Goguen and introduce the concept of Satisfiability Calculus. This concept can be regarded as the semantical counterpart of Meseguer?s notion of proof calculus, as it provides the formal foundations for those proof systems that resort to model construction techniques to prove or disprove a given formula, thus ?implementing? the satisfiability relation of an institution. These kinds of semantic proof methods have gained a great amount of interest in computer science over the years, as they provide the basic means for many automated theorem proving techniques.Fil: Lopez Pombo, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Castro, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Computación; ArgentinaFil: Aguirre, Nazareno M.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Computación; ArgentinaFil: Maibaum, Thomas S.E.. Mc Master University; Canad

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    Proof search in constructive logics

    Get PDF
    We present an overview of some sequent calculi organised not for "theorem-proving" but for proof search, where the proofs themselves (and the avoidance of known proofs on backtracking) are objects of interest. The main calculus discussed is that of Herbelin [1994] for intuitionistic logic, which extends methods used in hereditary Harrop logic programming; we give a brief discussion of similar calculi for other logics. We also point out to some related work on permutations in intuitionistic Gentzen sequent calculi that clarifies the relationship between such calculi and natural deduction.Centro de Matemática da Universidade do Minho (CMAT).União Europeia (UE) - Programa ESPRIT - BRA 7232 Gentzen
    • …
    corecore